forked from chen-judge/SKT
-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathimage.py
68 lines (53 loc) · 1.97 KB
/
image.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import random
import os
from PIL import Image,ImageFilter,ImageDraw
import numpy as np
import h5py
from PIL import ImageStat
import cv2
import time
def load_data(img_path,train=True, dataset='shanghai'):
""" Load data
Use crop_ratio between 0.5 and 1.0 for random crop
"""
gt_path = img_path.replace('.jpg', '.h5').replace('images', 'ground_truth')
img = Image.open(img_path).convert('RGB')
gt_file = h5py.File(gt_path)
target = np.asarray(gt_file['density'])
if train:
if dataset == 'shanghai':
crop_ratio = random.uniform(0.5, 1.0)
crop_size = (int(crop_ratio*img.size[0]), int(crop_ratio*img.size[1]))
dx = int(random.random() * (img.size[0]-crop_size[0]))
dy = int(random.random() * (img.size[1]-crop_size[1]))
img = img.crop((dx,dy,crop_size[0]+dx,crop_size[1]+dy))
target = target[dy:crop_size[1]+dy,dx:crop_size[0]+dx]
if random.random() > 0.8:
target = np.fliplr(target)
img = img.transpose(Image.FLIP_LEFT_RIGHT)
target = reshape_target(target, 3)
target = np.expand_dims(target, axis=0)
img = img.copy()
target = target.copy()
return img, target
def load_ucf_ori_data(img_path):
""" Load original UCF-QNRF data for testing
"""
gt_path = img_path.replace('.jpg', '.h5').replace('images', 'ground_truth')
img = Image.open(img_path).convert('RGB')
gt_file = h5py.File(gt_path)
target = np.asarray(gt_file['density'])
return img, target
def reshape_target(target, down_sample=3):
""" Down sample GT to 1/8
"""
height = target.shape[0]
width = target.shape[1]
# ceil_mode=True for nn.MaxPool2d in model
for i in range(down_sample):
height = int((height+1)/2)
width = int((width+1)/2)
# height = int(height/2)
# width = int(width/2)
target = cv2.resize(target, (width, height), interpolation=cv2.INTER_CUBIC) * (2**(down_sample*2))
return target