Skip to content

Latest commit

 

History

History
77 lines (59 loc) · 2.64 KB

README.md

File metadata and controls

77 lines (59 loc) · 2.64 KB

Former Models for Long-Term Series Forecasting (LTSF)

简体中文 | English

本项目在幻方萤火超算集群上用 PyTorch 实现了 InformerAutoformer 两个模型的分布式训练版本,它们是近年来采用 transformer 系列方法进行长时间序列预测的代表模型之一。

Informer

Requirements

Training

原始数据来自 Autoformer开源仓库 ,整理进 hfai.datasets 数据集仓库中,包括:ETTh1, ETTh2, ETTm1, ETTm2, exchange_rate, electricity, national_illness, traffic。 使用参考hfai开发文档

  1. 训练 informer

    提交任务至萤火集群

     hfai python train.py --ds ETTh1 --model informer -- -n 1 -p 30

    本地运行:

     python train.py --ds ETTh1 --model informer
  2. 训练 Autoformer

    提交任务至萤火集群

     hfai python train.py --ds ETTh1 --model autoformer -- -n 1 -p 30

    本地运行:

     python train.py --ds ETTh1 --model autoformer

References

Citation

@inproceedings{haoyietal-informer-2021,
  author    = {Haoyi Zhou and
               Shanghang Zhang and
               Jieqi Peng and
               Shuai Zhang and
               Jianxin Li and
               Hui Xiong and
               Wancai Zhang},
  title     = {Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting},
  booktitle = {The Thirty-Fifth {AAAI} Conference on Artificial Intelligence, {AAAI} 2021, Virtual Conference},
  volume    = {35},
  number    = {12},
  pages     = {11106--11115},
  publisher = {{AAAI} Press},
  year      = {2021},
}
@inproceedings{wu2021autoformer,
  title={Autoformer: Decomposition Transformers with {Auto-Correlation} for Long-Term Series Forecasting},
  author={Haixu Wu and Jiehui Xu and Jianmin Wang and Mingsheng Long},
  booktitle={Advances in Neural Information Processing Systems},
  year={2021}
}