-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathtrain_gpt.py
330 lines (258 loc) · 11 KB
/
train_gpt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
import argparse
from pathlib import Path
import torch
import torch.nn.functional as F
from torch.utils.tensorboard import SummaryWriter
from torch.utils.data.distributed import DistributedSampler
from torchvision.utils import make_grid
import hfai
import hfai.distributed as dist
from hfai.nn.parallel import DistributedDataParallel
from models.vqgan import VQGAN
from models.clip import clip_vit_b32
from models.gpt import __dict__ as gpts
from datasets.gpt import __dict__ as datasets
from datasets.statistic import mean, std
from utils import *
###########################################
# CONFIG
###########################################
parser = argparse.ArgumentParser(description="Train GPT")
parser.add_argument("--ds", type=str, default="coco", help="dataset name")
parser.add_argument("--gpt", type=str, default="gpt2_medium", help="GPT model")
parser.add_argument("--dropout", type=float, default=0.1, help="dropout rate")
parser.add_argument("--bs", type=int, default=2, help="batch size")
parser.add_argument("--vqgan_ckpt", type=str, help="VQGAN pretrained model")
args = parser.parse_args()
gpt_name = args.gpt
dataset_name = args.ds
batch_size = args.bs
dropout = args.dropout
vqgan_ckpt = args.vqgan_ckpt
codebook_size = 16384
embed_dim = 256
normalize_clip = True
loss_clip_weight = 0
use_amp = False
enabled_warmup = True
epochs = 200
warmup_epochs = 20
min_lr = 0
base_lr = 5e-4 / 256
save_path = Path(f"output/gpt/{dataset_name}")
# sample
top_k = 500
top_p = 0.95
writer = None
def log_recon_images(name, x, x_recon, step):
std1 = torch.tensor(std).view(1, -1, 1, 1).to(x)
mean1 = torch.tensor(mean).view(1, -1, 1, 1).to(x)
img = torch.cat([x_recon, x], dim=0) # [2 * N, 3, H, W]
img = img * std1 + mean1
img = make_grid(img, nrow=x.size(0))
writer.add_image(name, img.clamp(0, 1), step)
def logits_to_z(vqgan, logits):
# logits, probs: size (B, L, vocab_size)
probs = F.softmax(logits, dim=-1)
embedding = vqgan.quantizer.embedding.weight # (vocab_size, E)
vocab_size, E = embedding.shape
# argmax: size (B, L)
# one-hot: size (B, L, vocab_size)
argmax = torch.argmax(logits, dim=2)
onehot = F.one_hot(argmax, num_classes=vocab_size).float()
# quantize
onehot = probs + (onehot - probs).detach()
B, L, vocab_size = onehot.shape
z = onehot.view(B * L, vocab_size) @ embedding
z = z.view(B, L, E)
return z
def train(dataloader, gpt, vqgan, clip, optimizer, scheduler, scaler, epoch, start_step, best_score):
gpt.train()
steps_per_epoch = len(dataloader) + start_step
for step, batch in enumerate(dataloader):
step += start_step
lr = scheduler.step(epoch + step / steps_per_epoch)
x, clip_x = [t.cuda() for t in batch[:2]] # images
# prepare data
with torch.no_grad():
_, _, indices = vqgan.encode(x)
indices = indices.view(indices.shape[0], -1).detach() # [B, h * w]
embeddings = clip.encode_image(clip_x) # [B, 512]
L = indices.size(1)
input_tokens = indices[:, :(L - 1)].contiguous() # [B, L]
optimizer.zero_grad()
with torch.cuda.amp.autocast(enabled=use_amp):
logits = gpt(input_tokens, embeddings)
loss_gpt = F.cross_entropy(logits.view(-1, logits.size(-1)), indices.view(-1))
# CLIP embedding reconstruction loss
if loss_clip_weight > 0:
z = logits_to_z(vqgan, logits).view(-1, 16, 16, 256)
z = z.permute(0, 3, 1, 2)
x_recon = vqgan.decode(z) # [B, 3, H, W]
clip_x_recon = F.interpolate(x_recon, size=224, mode='bilinear')
clip_embeds_recon = clip.encode_image(clip_x_recon) # [B, 512]
loss_clip = F.mse_loss(embeddings, clip_embeds_recon)
else:
loss_clip = torch.tensor(0).to(x)
loss = loss_gpt + loss_clip_weight * loss_clip
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
# save checkpoint if going to suspend
rank = dist.get_rank()
if rank == 0 and hfai.receive_suspend_command():
state = {
"model": gpt.module.state_dict(),
"optimizer": optimizer.state_dict(),
"scaler": scaler.state_dict(),
"epoch": epoch,
"step": step + 1,
"val_loss": best_score,
}
save_model(state, save_path / "latest.pt")
print("going to suspend...")
hfai.go_suspend()
# log
world_size = dist.get_world_size()
for t in [loss, loss_gpt, loss_clip]:
dist.all_reduce(t)
t.div_(world_size)
total_steps = epoch * steps_per_epoch + step
if step % 10 == 0:
mem_used = torch.cuda.max_memory_reserved() // (1 << 20)
print(f"Epoch: {epoch}, Step: {step}, loss: {loss:.3f}, loss_gpt: {loss_gpt:.3f}, loss_clip: {loss_clip:.3f}, "
f"lr: {lr:.5f}, MemUsed: {mem_used} MiB")
if rank == 0:
writer.add_scalar("train/loss", loss, total_steps)
writer.add_scalar("train/loss_gpt", loss_gpt, total_steps)
writer.add_scalar("train/loss_clip", loss_clip, total_steps)
writer.add_scalar("train/lr", lr, total_steps)
if rank == 0 and total_steps % 200 == 0:
# sample image
z_idx = gpt.module.sample(embeddings, steps=16 * 16, top_k=top_k, top_p=top_p) # [B, 16*16]
with torch.no_grad():
z_idx = z_idx.view(-1, 16, 16)
z = vqgan.quantizer.decode(z_idx) # (B, H, W, C)
z = z.permute(0, 3, 1, 2) # [B, C, H, W]
x_recon = vqgan.decode(z) # [B, 3, 256, 256]
log_recon_images("train/from-images", x, x_recon, total_steps)
@torch.no_grad()
def validate(dataloader, gpt, vqgan, clip, epoch):
gpt.eval()
total, val_loss = torch.zeros(2).cuda()
for batch in dataloader:
x, clip_x = [t.cuda() for t in batch]
_, _, indices = vqgan.encode(x)
indices = indices.view(indices.shape[0], -1).detach() # [B, h * w]
embeddings = clip.encode_image(clip_x) # [B, 512]
L = indices.size(1)
logits = gpt.module(indices[:, :(L - 1)], embeddings)
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), indices.view(-1))
val_loss += loss * x.shape[0]
total += x.shape[0]
for t in [total, val_loss]:
dist.all_reduce(t)
val_loss = val_loss.item() / total.item()
print(f"=== Validate: epoch {epoch}, val_loss {val_loss:.3f}")
if dist.get_rank() == 0:
# decode the last batch
z_idx = gpt.module.sample(embeddings, steps=256, top_k=top_k, top_p=top_p) # [-1, 16*16]
z_idx = z_idx.view(-1, 16, 16)
z = vqgan.quantizer.decode(z_idx) # (B, H, W, C)
z = z.permute(0, 3, 1, 2) # [B, C, H, W]
x_recon = vqgan.decode(z) # [B, 3, H, W]
writer.add_scalar("val/val_loss", val_loss, epoch)
log_recon_images("val/from-texts", x, x_recon, epoch)
dist.barrier()
return val_loss
def main(local_rank):
log_path = save_path / "runs"
save_path.mkdir(exist_ok=True, parents=True)
rank, world_size = init_dist(local_rank)
backup(__file__, save_path)
# fix the seed for reproducibility
torch.manual_seed(rank)
if rank == 0:
global writer
writer = SummaryWriter(log_path)
total_batch_size = batch_size * world_size
lr = base_lr * total_batch_size
##################################
# VQGAN
##################################
vqgan = VQGAN(codebook_size, embed_dim).cuda().eval().requires_grad_(False)
state = torch.load(vqgan_ckpt, map_location='cpu')
vqgan.load_state_dict(state['model'])
print(f"Loaded VQGAN model from {vqgan_ckpt}, epoch {state['epoch']}")
##################################
# GPT
##################################
gpt = gpts[gpt_name](vocab_size=codebook_size, dropout=dropout)
gpt = DistributedDataParallel(gpt, device_ids=[local_rank])
##################################
# CLIP
##################################
clip = clip_vit_b32(pretrained=True).cuda().eval().requires_grad_(False)
clip = CLIPWrapper(clip, normalize=normalize_clip)
##################################
# datasets
##################################
train_dataset = datasets[dataset_name]('train')
train_sampler = DistributedSampler(train_dataset, shuffle=True)
train_loader = train_dataset.loader(batch_size, num_workers=8, sampler=train_sampler, pin_memory=True)
val_dataset = datasets[dataset_name]('val')
val_sampler = DistributedSampler(val_dataset, shuffle=False)
val_loader = val_dataset.loader(batch_size, num_workers=8, sampler=val_sampler, pin_memory=True, drop_last=True)
##################################
# scaler & optimizer
##################################
scaler = torch.cuda.amp.GradScaler(enabled=use_amp)
optimizer = configure_optimizer(gpt.module, lr)
scheduler = CosineLRWarmUp(optimizer, warmup_epochs, epochs, lr, min_lr, enabled=enabled_warmup)
# load
best_score = torch.inf
start_epoch, start_step = 0, 0
latest_path = save_path / "latest.pt"
if latest_path.exists():
ckpt = torch.load(latest_path, map_location="cpu")
gpt.module.load_state_dict(ckpt["model"])
optimizer.load_state_dict(ckpt["optimizer"])
scaler.load_state_dict(ckpt["scaler"])
start_epoch = ckpt["epoch"]
start_step = ckpt["step"]
best_score = ckpt["val_loss"]
print(f"loaded GPT model from epoch {start_epoch}, step {start_step}")
else:
print(f"{latest_path} not found, start training from scractch")
# validate(val_loader, gpt, vqgan, clip, start_epoch - 1)
# train, validate
for epoch in range(start_epoch, epochs):
# resume from epoch and step
train_sampler.set_epoch(epoch)
train_loader.set_step(start_step)
train(train_loader, gpt, vqgan, clip, optimizer, scheduler, scaler, epoch, start_step, best_score)
val_loss = torch.inf
if epoch % 10 == 0 or epoch == epochs - 1:
val_loss = validate(val_loader, gpt, vqgan, clip, epoch)
start_step = 0 # reset
# save
if rank == 0:
state = {
"model": gpt.module.state_dict(),
"optimizer": optimizer.state_dict(),
"scaler": scaler.state_dict(),
"epoch": epoch + 1,
"val_loss": min(best_score, val_loss),
"step": 0,
}
save_model(state, latest_path)
if epoch % 10 == 0 or epoch == epochs - 1:
save_model(state, save_path / f"{epoch:04d}.pt")
if val_loss < best_score:
best_score = val_loss
save_model(state, save_path / "best.pt")
if writer:
writer.close()
if __name__ == "__main__":
ngpus = torch.cuda.device_count()
torch.multiprocessing.spawn(main, args=(), nprocs=ngpus)