BoxInst: High-Performance Instance Segmentation with Box Annotations;
Zhi Tian, Chunhua Shen, Xinlong Wang and Hao Chen;
In: Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR), 2021.
arXiv preprint arXiv:2012.02310
[Paper
] [BibTeX
] [Video Demo
]
First, follow the default instruction to install the project and datasets/README.md set up the datasets (e.g., MS-COCO).
For demo, run the following command lines:
wget https://cloudstor.aarnet.edu.au/plus/s/Aabn3BEuq4HKiNK/download -O BoxInst_MS_R_50_3x.pth
python demo/demo.py \
--config-file configs/BoxInst/MS_R_50_3x.yaml \
--input input1.jpg input2.jpg \
--opts MODEL.WEIGHTS BoxInst_MS_R_50_3x.pth
For training on COCO, run:
OMP_NUM_THREADS=1 python tools/train_net.py \
--config-file configs/BoxInst/MS_R_50_1x.yaml \
--num-gpus 8 \
OUTPUT_DIR training_dir/BoxInst_MS_R_50_1x
For evaluation on COCO, run:
OMP_NUM_THREADS=1 python tools/train_net.py \
--config-file configs/BoxInst/MS_R_50_1x.yaml \
--eval-only \
--num-gpus 8 \
OUTPUT_DIR training_dir/BoxInst_MS_R_50_1x \
MODEL.WEIGHTS training_dir/BoxInst_MS_R_50_1x/model_final.pth
COCO Instance Segmentation Baselines with BoxInst
Only box annotations are used during training.
Name | inf. time | box AP | mask AP | mask AP (test-dev) | download |
---|---|---|---|---|---|
BoxInst_MS_R_50_1x | 14 FPS | 39.4 | 30.7 | - | model |
BoxInst_MS_R_50_3x | 14 FPS | 41.5 | 31.8 | 32.1 | model |
BoxInst_MS_R_101_1x | 11 FPS | 41.4 | 32.2 | 32.5 | model |
BoxInst_MS_R_101_3x | 11 FPS | 43.3 | 33.0 | 33.2 | model |
BoxInst_MS_R_101_BiFPN_3x | 10 FPS | 45.4 | 34.1 | 33.9 | model |
BoxInst_MS_R_101_BiFPN_dcni3_3x | 8 FPS | 46.4 | 34.8 | 35.0 | model |
Disclaimer:
- All models are trained with multi-scale data augmentation. Inference time is measured on a single NVIDIA 1080Ti with batch size 1.
- This is a reimplementation. Thus, the numbers might be slightly different from the ones reported in our original paper.
If you use BoxInst in your research or wish to refer to the baseline results, please use the following BibTeX entries.
@inproceedings{tian2020boxinst,
title = {{BoxInst}: High-Performance Instance Segmentation with Box Annotations},
author = {Tian, Zhi and Shen, Chunhua and Wang, Xinlong and Chen, Hao},
booktitle = {Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR)},
year = {2021}
}