-
Notifications
You must be signed in to change notification settings - Fork 4
/
inference_brain_base.py
152 lines (126 loc) · 5.85 KB
/
inference_brain_base.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import glob
import nibabel as nib
import numpy as np
import os
import torch
from einops import rearrange
from omegaconf import OmegaConf
from torch.utils.data import DataLoader
from tqdm import tqdm
from ldm.util import instantiate_from_config
resume_path = './infer_model/brain_base'
paths = resume_path.split("/")
idx = len(paths)-paths[::-1].index("infer_model")+1
logdir = "/".join(paths[:idx])
logdir = resume_path.rstrip("/")
ckpt = os.path.join(logdir, "checkpoints", "last.ckpt")
base_configs = sorted(glob.glob(os.path.join(logdir, "configs/*.yaml")))[1]
configs = OmegaConf.load(base_configs)
model = instantiate_from_config(configs.model)
model.init_from_ckpt(ckpt)
model.eval()
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print("Using device", device)
model = model.to(device)
config = OmegaConf.load('./configs/latent-diffusion/inference_brain.yaml')
data = instantiate_from_config(config.data)
data.prepare_data()
data.setup()
save_path = 'inference'
save_path = os.path.join(logdir, save_path)
if not os.path.exists(save_path):
os.makedirs(save_path)
val_dataset = data.datasets['validation']
batch_size = 1
valloader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False, num_workers=2, pin_memory=True)
val_num = len(val_dataset)
save_gt = True
for idx, data in tqdm(enumerate(valloader)):
if idx >= val_num:
break
name = data['name']
gt = data['volume_data']
data_seg = data['volume_seg']
slice_num = gt.shape[1]
seg = rearrange(data_seg, 'b z h w c -> b z c h w')
seg = seg.to(memory_format=torch.contiguous_format).float()
seg = seg.to(model.device)
start_slice = np.random.randint(0, slice_num)
result = torch.zeros((batch_size, slice_num, 4, 64, 64)).cuda()
window_length = 16
h = 1
# sample in bi-directional with conditional diffusion model
upper_iters = (slice_num-start_slice-h) // (window_length-h)+1 if (slice_num-start_slice-h)%(window_length-h) != 0 else (slice_num-start_slice-h) // (window_length-h)
for i in range(upper_iters):
if i == upper_iters-1:
seg_i = seg[:, -window_length:]
else:
seg_i = seg[:, start_slice+i*window_length-i*h:start_slice+(i+1)*window_length-i*h]
seg_i = rearrange(seg_i, 'b z c h w -> (b z) c h w')
seg_i = seg_i.repeat(1,3,1,1)
encoder_posterior = model.encode_first_stage(seg_i)
seg_i = model.get_first_stage_encoding(encoder_posterior).detach()
c = seg_i
samples_i, _ = model.sample_log(cond=c, batch_size=seg_i.shape[0], ddim=True, eta=1., ddim_steps=200)
samples_i = rearrange(samples_i, '(b z) c h w -> b z c h w', z=window_length)
if i == upper_iters-1:
result[:, -window_length+h:] = samples_i[:,h:,...]
else:
if i == 0:
result[:, start_slice:start_slice+window_length] = samples_i
else:
result[:, start_slice+i*window_length-i*h+h:start_slice+(i+1)*window_length-i*h] = samples_i[:, h:]
# sample the other direction, note the direction
lower_iters = (start_slice-h) // (window_length-h)+1 if (start_slice-h)%(window_length-h) != 0 else (start_slice-h) // (window_length-h)
for i in range(lower_iters):
if i == lower_iters-1:
seg_i = seg[:, :window_length]
else:
seg_i = seg[:, start_slice-(i+1)*window_length+i*h+1:start_slice-i*window_length+i*h+1]
seg_i = rearrange(seg_i, 'b z c h w -> (b z) c h w')
seg_i = seg_i.repeat(1,3,1,1)
encoder_posterior = model.encode_first_stage(seg_i)
seg_i = model.get_first_stage_encoding(encoder_posterior).detach()
c = seg_i
samples_i, _ = model.sample_log(cond=c, batch_size=seg_i.shape[0], ddim=True, eta=1., ddim_steps=200)
samples_i = rearrange(samples_i, '(b z) c h w -> b z c h w', z=window_length)
if i == lower_iters-1:
result[:, :window_length-h] = samples_i[:, :window_length-h,...]
else:
if i == 0:
result[:, start_slice-window_length+1:start_slice+1] = samples_i
else:
result[:, start_slice-(i+1)*window_length+i*h+1:start_slice-i*window_length+i*h-h+1] = samples_i[:, :-h]
result = rearrange(result, 'b z c h w -> (b z) c h w')
x_result = torch.zeros((result.shape[0],3,512,512))
dec_unit = 16
num_dec_iter = slice_num // dec_unit + 1 if slice_num % dec_unit != 0 else slice_num // dec_unit
for i in range(num_dec_iter):
if i == num_dec_iter - 1:
x_result[-dec_unit:] = model.decode_first_stage(result[-dec_unit:])
x_result[i*dec_unit:(i+1)*dec_unit] = model.decode_first_stage(result[i*dec_unit:(i+1)*dec_unit])
x_result[x_result>1.0] = 1.0
x_result[x_result<-1.0] = -1.0
x_result = (x_result+1)/2
x_result = rearrange(x_result, '(b z) c h w -> b z c h w', z=slice_num)
x_result = x_result[0,:,0,...].detach().cpu().numpy()
x_result = x_result.transpose(1,2,0)
x_result = np.rot90(x_result, k=1, axes=(0,1))
data_path = os.path.join(save_path, str(f'{name[0]}_output.nii'))
data_nii = nib.Nifti1Image(x_result, np.identity(4))
nib.save(data_nii, data_path)
if save_gt:
gt = (gt+1)/2
gt = gt[0,:,:,:,0].detach().cpu().numpy()
gt = gt.transpose(1,2,0)
gt = np.rot90(gt, k=1, axes=(0,1))
data_path = os.path.join(save_path, str(f'{name[0]}_gt.nii'))
data_nii = nib.Nifti1Image(gt, np.identity(4))
nib.save(data_nii, data_path)
data_seg = (data_seg+1)/2 * 3
data_seg = data_seg[0,:,:,:,0].detach().cpu().numpy()
data_seg = data_seg.transpose(1,2,0)
data_seg = np.rot90(data_seg, k=1, axes=(0,1))
data_path = os.path.join(save_path, str(f'{name[0]}_seg.nii'))
data_nii = nib.Nifti1Image(data_seg, np.identity(4))
nib.save(data_nii, data_path)