-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
537 lines (387 loc) · 18.7 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
import numpy as np
from numpy import random
import pickle
from scipy.sparse import csr_matrix
import math
import gc
import time
import random
import datetime
import dgl
import torch as t
import torch.nn as nn
import torch.utils.data as dataloader
import torch.nn.functional as F
import hypergraph_utils
import DataHandler
import model
from params import args
from Utils.TimeLogger import log
import evaluate
if t.cuda.is_available():
use_cuda = True
else:
use_cuda = False
now_time = datetime.datetime.now()
modelTime = datetime.datetime.strftime(now_time,'%Y_%m_%d__%H_%M_%S')
class Model():
def __init__(self):
self.trn_file = args.path + args.dataset + '/trn_'
self.tst_file = args.path + args.dataset + '/tst_int'
self.position_file = args.path + args.dataset + '/position_trn_'
self.t_max = -1
self.t_min = 0x7FFFFFFF
self.time_number = -1
self.user_num = -1
self.item_num = -1
self.subgraphs = {}
self.behaviors = []
self.behaviors_data = {}
#history
self.train_loss = []
self.his_hr = []
self.his_ndcg = []
gc.collect() #
#
self.curEpoch = 0
# self.isLoadModel = args.isload
if args.dataset == ('Tmall' or 'Tmall_LH'):
# self.behaviors = ['buy']
self.behaviors = ['pv','fav', 'cart', 'buy']
elif args.dataset == 'IJCAI_15':
self.behaviors = ['click','fav', 'cart', 'buy']
# self.behaviors = ['buy']
elif args.dataset == 'JD':
self.behaviors = ['review','browse', 'buy']
# self.behaviors = ['buy']
elif args.dataset == 'retailrocket':
self.behaviors = ['view','cart', 'buy']
self.positional_mat = t.tensor(pickle.load(open(self.position_file+'buy','rb')).todense())
for i in range(0, len(self.behaviors)):
with open(self.trn_file + self.behaviors[i], 'rb') as fs:
data = pickle.load(fs)
self.behaviors_data[i] = data
if data.get_shape()[0] > self.user_num:
self.user_num = data.get_shape()[0]
if data.get_shape()[1] > self.item_num:
self.item_num = data.get_shape()[1]
if data.data.max() > self.t_max:
self.t_max = data.data.max()
if data.data.min() < self.t_min:
self.t_min = data.data.min()
if self.behaviors[i]==args.target:
self.trainMat = data
self.trainLabel = 1*(self.trainMat != 0)
self.labelP = np.squeeze(np.array(np.sum(self.trainLabel, axis=0)))
tmp_time_number = (self.t_max - self.t_min) / args.time_slot + 1
tmp_time_number = tmp_time_number.astype(int)
if tmp_time_number > self.time_number:
self.time_number = tmp_time_number
print("print time slot: ", self.time_number)
print("\n")
self.max_len_dict = self.get_max_len_dict(self.behaviors_data)
self.max_len = max(self.max_len_dict)
self.positional_embedding = self.positional_encoding(args.hidden_dim, self.max_len)
time = datetime.datetime.now()
print("Build the subgraph: ", time)
for i in range(0, len(self.behaviors)):
beh_subgraphs = hypergraph_utils.subgraph_construction(self.behaviors_data[i], self.time_number, self.user_num, self.item_num, self.t_min)
self.subgraphs[i] = beh_subgraphs
time = datetime.datetime.now()
print("Build the subgraph: ", time)
print("user_num: ", self.user_num)
print("item_num: ", self.item_num)
print("\n")
#-------------------------------------------------------------------------------------------------->>>>>
train_u, train_v = self.trainMat.nonzero()
train_data = np.hstack((train_u.reshape(-1,1), train_v.reshape(-1,1))).tolist()
train_dataset = DataHandler.RecDataset(train_data, self.item_num, self.trainMat, True)
self.train_loader = dataloader.DataLoader(train_dataset, batch_size=args.batch, shuffle=True, num_workers=0)
# test_data
with open(self.tst_file, 'rb') as fs:
data = pickle.load(fs)
test_user = np.array([idx for idx, i in enumerate(data) if i is not None])
test_item = np.array([i for idx, i in enumerate(data) if i is not None])
test_data = np.hstack((test_user.reshape(-1,1), test_item.reshape(-1,1))).tolist()
test_dataset = DataHandler.RecDataset(test_data, self.item_num, self.trainMat, 0, False)
self.test_loader = dataloader.DataLoader(test_dataset, batch_size=args.batch, shuffle=False, num_workers=0)
# ------------------------------------------------------------------------------------------------------->>>>>
def positional_encoding(self, d_model, max_seq_len):
position_encoding = t.tensor(np.array([
[pos / np.power(10000, 2.0 * (j // 2) / d_model) for j in range(d_model)]
for pos in range(max_seq_len)]))
position_encoding[:, 0::2] = np.sin(position_encoding[:, 0::2])
position_encoding[:, 1::2] = np.cos(position_encoding[:, 1::2])
pad_row = t.zeros([1, d_model])
position_encoding = t.cat((pad_row, position_encoding))
position_encoding = nn.Parameter(position_encoding, requires_grad=False).cuda()
return position_encoding.data
def get_max_len_dict(self, behaviors_data):
max_len_dict = []
for index, value in enumerate(self.behaviors):
max_len_dict.append(int(max((1*behaviors_data[index]!=0).sum(-1))))
return max_len_dict
def prepareModel(self):
self.modelName = self.getModelName() #
self.setRandomSeed()
self.gnn_layer = eval(args.gnn_layer) #
self.hidden_dim = args.hidden_dim
if args.isload == True:
self.loadModel(args.loadModelPath)
else:
self.model = model.myModel(self.user_num, self.item_num, self.time_number, self.behaviors, self.subgraphs)
self.opt = t.optim.AdamW(self.model.parameters(), lr = args.lr, weight_decay = args.opt_weight_decay)
self.scheduler = t.optim.lr_scheduler.CyclicLR(self.opt, args.opt_base_lr, args.opt_max_lr, step_size_up=5, step_size_down=10, mode='triangular', gamma=0.99, scale_fn=None, scale_mode='cycle', cycle_momentum=False, base_momentum=0.8, max_momentum=0.9, last_epoch=-1)
if use_cuda:
self.model = self.model.cuda()
def innerProduct(self, u, i, j):
pred_i = t.sum(t.mul(u,i), dim=1)
pred_j = t.sum(t.mul(u,j), dim=1)
return pred_i, pred_j
def innerProduct_positional(self, u, i, j, user, item_i, item_j): #
u_p_pos = u + args.positional_rate*F.normalize(self.positional_embedding[self.positional_mat[user, item_i]])
u_p_neg = u + args.positional_rate*F.normalize(self.positional_embedding[self.positional_mat[user, item_j]])
i_p = i + args.positional_rate*F.normalize(self.positional_embedding[self.positional_mat[user, item_i]])
j_p = j + args.positional_rate*F.normalize(self.positional_embedding[self.positional_mat[user, item_j]])
pred_i = t.sum(t.mul(u_p_pos,i_p), dim=1)
pred_j = t.sum(t.mul(u_p_neg,j_p), dim=1)
return pred_i, pred_j
def run(self):
self.prepareModel()
if args.isload == True:
print("----------------------pre test:")
HR, NDCG = self.testEpoch(self.test_loader)
print(f"HR: {HR} , NDCG: {NDCG}")
log('Model Prepared')
cvWait = 0
self.best_HR = 0
self.best_NDCG = 0
flag = 0
print("Test before train:")
HR, NDCG = self.testEpoch(self.test_loader)
for e in range(self.curEpoch, args.epoch+1):
test = (e % args.tstEpoch == 0)
self.curEpoch = e
log("*****************start epoch %d: ************************"%e)
if args.isJustTest == False:
epoch_loss = self.trainEpoch()
self.train_loss.append(epoch_loss)
log("epoch %d/%d, epoch_loss=%.2f"% (e, args.epoch, epoch_loss))
self.train_loss.append(epoch_loss)
else:
break
HR, NDCG = self.testEpoch(self.test_loader)
self.his_hr.append(HR)
self.his_ndcg.append(NDCG)
self.scheduler.step()
if HR > self.best_HR:
self.saveHistory()
self.saveModel()
self.best_HR = HR
self.best_epoch = self.curEpoch
cvWait = 0
print("--------------------------------best_HR", self.best_HR)
# print("-----------------------------------NDCG", self.best_NDCG)
if NDCG > self.best_NDCG:
self.saveHistory()
self.saveModel()
self.best_NDCG = NDCG
self.best_epoch = self.curEpoch
cvWait = 0
# print("-----------------------------------------------HR", self.best_HR)
print("-----------------------------------------------best_NDCG", self.best_NDCG)
if (HR<self.best_HR) and (NDCG<self.best_NDCG):
cvWait += 1
if cvWait == args.patience:
print(f"Early stop at {self.best_epoch} : best HR: {self.best_HR}, best_NDCG: {self.best_NDCG} \n")
self.saveHistory()
self.saveModel()
break
HR, NDCG = self.testEpoch(self.test_loader)
self.his_hr.append(HR)
self.his_ndcg.append(NDCG)
def sim(self, z1, z2):
z1 = F.normalize(z1)
z2 = F.normalize(z2)
return t.mm(z1, z2.t())
def batched_contrastive_loss(self, z1, z2, batch_size=1024):
device = z1.device
num_nodes = z1.size(0)
num_batches = (num_nodes - 1) // batch_size + 1
f = lambda x: t.exp(x / args.tau) #
indices = t.arange(0, num_nodes).to(device)
losses = []
for i in range(num_batches):
tmp_i = indices[i * batch_size:(i + 1) * batch_size]
tmp_refl_sim_list = []
tmp_between_sim_list = []
for j in range(num_batches):
tmp_j = indices[j * batch_size:(j + 1) * batch_size]
tmp_refl_sim = f(self.sim(z1[tmp_i], z1[tmp_j]))
tmp_between_sim = f(self.sim(z1[tmp_i], z2[tmp_j]))
tmp_refl_sim_list.append(tmp_refl_sim)
tmp_between_sim_list.append(tmp_between_sim)
refl_sim = t.cat(tmp_refl_sim_list, dim=-1)
between_sim = t.cat(tmp_between_sim_list, dim=-1)
losses.append(-t.log(between_sim[:, i * batch_size:(i + 1) * batch_size].diag()/ (refl_sim.sum(1) + between_sim.sum(1) - refl_sim[:, i * batch_size:(i + 1) * batch_size].diag())+1e-8))
del refl_sim, between_sim, tmp_refl_sim_list, tmp_between_sim_list
loss_vec = t.cat(losses)
return loss_vec.mean()
def sampleTrainBatch_dgl(self, batIds, pos_id=None, g=None, g_neg=None, sample_num=None, sample_num_neg=None):
sub_g = dgl.sampling.sample_neighbors(g.cpu(), {'user':batIds}, sample_num, edge_dir='out', replace=True)
row, col = sub_g.edges()
row = row.reshape(len(batIds), sample_num)
col = col.reshape(len(batIds), sample_num)
if g_neg==None:
return row, col
else:
sub_g_neg = dgl.sampling.sample_neighbors(g_neg, {'user':batIds}, sample_num_neg, edge_dir='out', replace=True)
row_neg, col_neg = sub_g_neg.edges()
row_neg = row_neg.reshape(len(batIds), sample_num_neg)
col_neg = col_neg.reshape(len(batIds), sample_num_neg)
return row, col, col_neg
def trainEpoch(self):
train_loader = self.train_loader
train_loader.dataset.ng_sample()
epoch_loss = 0
cnt = 0
for user, item_i, item_j in train_loader:
user = user.long().cuda()
item_i = item_i.long().cuda()
item_j = item_j.long().cuda()
user_embed, item_embed, embedding_dict_after_gnn, embedding_dict_after_gnn_dynamic_ssl, user_embedding_before_attention = self.model(self.subgraphs)
#----ssl-------------------------------------------------------------------------------------------------------------
#ori
long_contrastive_loss = 0
for beh_ in range(len(self.behaviors)):
long_contrastive_loss += self.batched_contrastive_loss(user_embedding_before_attention[self.behaviors[beh_]][user], user_embed[user])
#dynamic
short_contrastive_loss = 0
for time_ in range(len(embedding_dict_after_gnn)):
for beh_ in range(len(self.behaviors)):
short_contrastive_loss += self.batched_contrastive_loss(embedding_dict_after_gnn[time_][self.behaviors[beh_]][user], embedding_dict_after_gnn_dynamic_ssl[time_][user])
#----ssl-------------------------------------------------------------------------------------------------------------
userEmbed = user_embed[user]
posEmbed = item_embed[item_i]
negEmbed = item_embed[item_j]
pred_i, pred_j = self.innerProduct_positional(userEmbed, posEmbed, negEmbed, user, item_i, item_j)
bprloss = - (pred_i.view(-1) - pred_j.view(-1)).sigmoid().log().sum()
regLoss = (t.norm(userEmbed) ** 2 + t.norm(posEmbed) ** 2 + t.norm(negEmbed) ** 2)
loss = 0.5 * (bprloss + args.reg * regLoss) / args.batch + args.cl_long_rate*long_contrastive_loss + args.cl_short_rate*short_contrastive_loss
epoch_loss = epoch_loss + bprloss.item()
self.opt.zero_grad()
loss.backward()
self.opt.step()
cnt+=1
log('step %d, step_loss = %f'%(cnt, loss.item()), save=False, oneline=True)
log("finish train")
return epoch_loss
def testEpoch(self, data_loader, save=False):
epochHR, epochNDCG = [0]*2
user_embed, item_embed, embedding_dict_after_gnn, embedding_dict_after_gnn_dynamic_ssl, user_embedding_before_attention = self.model(self. subgraphs)
cnt = 0
tot = 0
for user, item_i in data_loader:
user_compute, item_compute, user_item1, user_item100 = self.sampleTestBatch(user, item_i)
userEmbed = user_embed[user_compute] #
itemEmbed = item_embed[item_compute]
pred_i = t.sum(t.mul(userEmbed, itemEmbed), dim=1)
hit, ndcg = self.calcRes(t.reshape(pred_i, [user.shape[0], 100]), user_item1, user_item100)
epochHR = epochHR + hit
epochNDCG = epochNDCG + ndcg #
cnt += 1
tot += user.shape[0]
result_HR = epochHR / tot
result_NDCG = epochNDCG / tot
print(f"Step {cnt}: hit:{result_HR}, ndcg:{result_NDCG}")
return result_HR, result_NDCG
def sampleTestBatch(self, batch_user_id, batch_item_id):
batch = len(batch_user_id)
tmplen = (batch*100)
sub_trainMat = self.trainMat[batch_user_id].toarray()
user_item1 = batch_item_id
user_compute = [None] * tmplen
item_compute = [None] * tmplen
user_item100 = [None] * (batch)
cur = 0
for i in range(batch):
pos_item = user_item1[i]
negset = np.reshape(np.argwhere(sub_trainMat[i]==0), [-1])
pvec = self.labelP[negset]
pvec = pvec / np.sum(pvec)
random_neg_sam = np.random.permutation(negset)[:99]
user_item100_one_user = np.concatenate(( random_neg_sam, np.array([pos_item])))
user_item100[i] = user_item100_one_user
for j in range(100):
user_compute[cur] = batch_user_id[i]
item_compute[cur] = user_item100_one_user[j]
cur += 1
return user_compute, item_compute, user_item1, user_item100
def calcRes(self, pred_i, user_item1, user_item100):
hit = 0
ndcg = 0
for j in range(pred_i.shape[0]):
_, shoot_index = t.topk(pred_i[j], args.shoot)
shoot_index = shoot_index.cpu()
shoot = user_item100[j][shoot_index]
shoot = shoot.tolist()
if type(shoot)!=int and (user_item1[j] in shoot):
hit += 1
ndcg += np.reciprocal( np.log2( shoot.index( user_item1[j])+2))
elif type(shoot)==int and (user_item1[j] == shoot):
hit += 1
ndcg += np.reciprocal( np.log2( 0+2))
return hit, ndcg
def setRandomSeed(self):
np.random.seed(args.seed)
t.manual_seed(args.seed)
t.cuda.manual_seed(args.seed)
random.seed(args.seed)
def getModelName(self):
title = args.title
ModelName = \
args.point + \
"_" + title + \
"_" + args.dataset +\
"_" + modelTime + \
"_lr_" + str(args.lr) + \
"_reg_" + str(args.reg) + \
"_batch_size_" + str(args.batch) + \
"_time_slot_" + str(args.time_slot) + \
"_gnn_layer_" + str(args.gnn_layer)
return ModelName
def saveHistory(self):
history = dict()
history['loss'] = self.train_loss
history['HR'] = self.his_hr
history['NDCG'] = self.his_ndcg
ModelName = self.modelName
with open(r'./History/' + args.dataset + r'/' + ModelName + '.his', 'wb') as fs:
pickle.dump(history, fs)
def saveModel(self):
ModelName = self.modelName
history = dict()
history['loss'] = self.train_loss
history['HR'] = self.his_hr
history['NDCG'] = self.his_ndcg
savePath = r'./Model/' + args.dataset + r'/' + ModelName + r'.pth'
params = {
'epoch': self.curEpoch,
'model': self.model,
'history': history,
}
t.save(params, savePath)
def loadModel(self, loadPath):
ModelName = self.modelName
loadPath = loadPath
checkpoint = t.load(loadPath)
self.model = checkpoint['model']
self.curEpoch = checkpoint['epoch'] + 1
history = checkpoint['history']
self.train_loss = history['loss']
self.his_hr = history['HR']
self.his_ndcg = history['NDCG']
if __name__ == '__main__':
print(args)
my_model = Model()
my_model.run()