-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathviolin.py
48 lines (43 loc) · 1.57 KB
/
violin.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
# -*- coding: utf-8 -*-
# based on http://pyinsci.blogspot.fr/2009/09/violin-plot-with-matplotlib.html
# by Flavio Coelho
from matplotlib.pyplot import figure, show
from scipy.stats import gaussian_kde
from numpy.random import normal
from numpy import arange
import math
def log_support(low, high, n) :
ll = math.log(low)
lh = math.log(high)
lstep = (lh - ll) / n
ls = [ll + lstep * i for i in range(n)]
return [10**x for x in ls]
def violin_plot(data, bp=False, scale=False, labels=None):
'''
create violin plots on an axis
'''
fig=figure()
ax = fig.add_subplot(111)
ax.set_yscale('log')
dist = len(data)
w = min(0.15*max(dist,1.0), 0.5)
for p,d in enumerate(data):
k = gaussian_kde(d) #calculates the kernel density
m = k.dataset.min() #lower bound of violin
M = k.dataset.max() #upper bound of violin
x = arange(m, M, (M-m) / 100.) # support for violin
x = log_support(m, M, 100)
v = k.evaluate(x) #violin profile (density curve)
if scale :
v = v / v.max() * w #scaling the violin to the available space
ax.fill_betweenx(x, p, v+p, facecolor='y', alpha=0.3)
ax.fill_betweenx(x, p, -v+p, facecolor='y', alpha=0.3)
if bp:
ax.boxplot(data, notch=1, positions=range(len(data)) ,vert=1)
if labels != None :
ax.set_xticklabels(labels)
show()
if __name__=="__main__":
pos = range(5)
data = [normal(size=100) for i in pos]
violin_plot(data, bp=True, labels=['0xabc05','8cf9b3','af77c3','91b3cf','233c2a', 'extra label'])