-
Notifications
You must be signed in to change notification settings - Fork 23
/
inigiss.F90
1414 lines (1402 loc) · 51.9 KB
/
inigiss.F90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
subroutine inigiss
use mod_xc ! HYCOM communication interface
use mod_cb_arrays ! HYCOM saved arrays
!
! --- hycom version 2.1
implicit none
!
! -----------------------------------------------
! --- initialize nasa-giss vertical mixing scheme
! -----------------------------------------------
!
integer i,j,k
!
real slq2b_00,smb_00,shb_00,ssb_00,c_y0,c_y00,deltanum, &
deltaden,delta,rrcrn,rrcrp,theta_rcrn_deg,theta_rcrp_deg, &
delra_r,theta_r_deg,theta_r,sm_r0,sh_r0,ss_r0,ra_r,ra_r1, &
rit,ric,ri_r,rid_r,sm_r,sh_r,ss_r,smosloq_r,rit1,ric1, &
ri_r1,rid_r1,slq2_r,smosloq_0r,ra_r0,rit0,ric0,ri_r0,rid_r0, &
slq2_r0,c_y001,sisa1
!
integer iridsign,iridstep,irid,iri,mt0s,mtm1s,idfs,idif,irisign, &
iristep,itheta_r,jtheta_r,isailback,idifs,ira_r,ibg, &
ipenra_r
!
real acosh1,xx
# include "stmt_fns.h"
acosh1(xx) = log(xx+sqrt((xx**2)-1.0))
!
! --- initialize viscosity and diffusivity arrays
do j=1,jdm
do i=1,idm
do k=1,kdm+1
vcty(i,j,k)=diwm(i,j)
dift(i,j,k)=diws(i,j)
difs(i,j,k)=diws(i,j)
! --- no nonlocal forcing
ghats(i,j,k)=0.0
enddo
enddo
enddo
!
! --- dimensions for the tables in mxgiss routine
! --- the file is needed in order to preserve in the
! --- arrays for the Ri-tables
!
pidbl=3.14159265358979312
ntbl=251
nextrtbl0=62
ifexpabstable=1
nextrtbl1=500
nextrtbl=nextrtbl0+ifexpabstable*nextrtbl1
nposapprox=51
mt0=ntbl-nposapprox
mt=mt0+nextrtbl ! table dimensions
mt_ra_r=nposapprox-1
n_theta_r_oct=(((pidbl/4.)*mt_ra_r)/15.)*15
deltheta_r=(pidbl/4.)/(n_theta_r_oct)
!
! --- set other parameters
!
ri0=- 4.0 !C parameter(ri0=-20.D0)
ebase=2.71828182845904509
ifback=5 !Temperature=Salt diffusivity model background
!model swith.
! K_H,K_S (S=N/sqrt(Ri)),Ri=backfrac*Ri_Cr)
ifsali=1 !Salinity model switch (Canuto's)
ifepson2=2 !Background (epsilon/N^2) dimensionalization
!of diffusivities switch.
! cnst blw highst lvl frgr dies
epson2_ref=.288 !reference value of dissipation/N**2
!Value of (epsilon/N^2)/(1 cm/sec^2) used.
!See Canuto et al. JPO 2002 Sections 8&9.
!040126 Actual (epsilon/N^2) can vary with z,N and f .
eps_bot0=2.e-5 !The value of epsilon at the bottom in cgs,
!St.Laurent et al. JPO2001 give epsilon = 3to9e-9 W/kg
!for slopes and 2to5e-9 W/kg for crests and canyons.
scale_bot=5.e-4 !The scale (in cm) of exponential decrease of mixing
!above the bottom with height. St. Laurent et al. give
!150+-50 m for slopes, 500+-100 m for crests and canyons.
eplatidepmin=7.E-2 !Gregg et al. admit their formula eq.(2) for the
!latitude dependent factor L which scales turbulence
!won't work at the equator where it predicts epsilon=0.
!Introduce eplatidepmin, a minimum on the factor L .
wave_30=(pi/43082.0)*acosh1(5.24e-3/(pi/43082.0))
!reference value at 30degN with N=5.24e-3
!from Garerett and Munk, as used by Gregg et. al.
ifrafgmax=1 !Switch for limiting BackGround ra_r
!to at most Foreground ra_r when Ri>0
!for R_r in the [R_r_crit_DoubleDiffusion,
!R_r_crit_SaltFingers] regime.
ifsalback=5 !Salinity background modification switch.
!int.wvS=N/(Ri_i^(1/2)),Ri_icnst,
! ra_r_i=cnst*ra_r_crit.(theta_r)
ifchengcon=0 !old ocean cnsts,near-surf prof assump
ifpolartablewrite=0 !Switch to write out polar 2D
!turbulence table .
ifbg_theta_interp=1 !Introduce flag for use of \theta_r
!arrays to interpolate background.
!Intrplt 2D array
!(slq2_r1=array for (Sl/q)^2)
!with (Ri,Ri_d)indices
back_ph_0=(6.e-5)*(1.e2/(2.e0*pidbl))
!for ifsalback=3 case.
!Gargett et. al. JPO Vol.11 p.1258-71 gives
!for "the deep record",
!\phi_0=6\times10^{-5}s^{-2}cpm^{-1}.
!"cpm" is 'cycles per meter'.
!\phi_0=6\times10^{-5}s^{-2}(2 pidbl/100)^{-1}cm
adjust_gargett=1.0 !Gargett et. al. favor the value,
!k_0 = 0.1 cpm. But k_0=0.05-0.2 cpm
!might be viable, see section 5 of their
!paper. Take k_0 = 0.1 cpm * adjust_gargett,
!where adjust_gargett is adjustable.
!Convert to radians per cm:
!k_0 = 0.1 (2pi/100cm) * adjust_gargett.
!used for ifsalback=4 case also, but set
!adjust_gargett=1 for ifsalback=4
back_k_0=(0.1)*(2.0)*pidbl*(1.e-2)*adjust_gargett
!Introduce the lengthscale
!\Delta_0 \equiv pi/k_0 .
!The units of \Delta_0 are centimeters,
!with k_0 in radians per cm.
!`min turb' wvnmbr (cm^-1)
back_del_0=pidbl/back_k_0
back_s2=1.e-14 !back_s2 should be smaller than any normal Shear^2
back_sm2=1.0/back_s2 !1/back_s2 (sec^2)
ri_internal=1.0 !Parameter for ifsalback=4 case.
backfrac = 85.e-2 !Parameter for ifback or ifsalback=5 case.
!ifback=5: =cnst frac{Ri_cr};
!ifsalback=5:=cnst frac{ra_r_crit.(\theta_r)}
backfact = ebase**(-1) !Parameter for ifsalback=6 case.
ako = 1.6 ! Kolmogorov's constant
!
tpvot0 = 0.4 ! \tau_pv = {2 \over 5} \tau (B.1)
! "tpv/tau" = 2/5
! From the printed notes Canuto
! gave Armando on 980601 have:
sgmt=0.72 !Make "sgmt" a parameter.
!Standard value was 0.72.
tptot0=(1.0/5.0)*(1.0/(1.0+(1.0/sgmt)))
! \tau_p\theta over \tau
tpcot0=tptot0 !tau_pc over \tau
ttot0=sgmt !tau_\theta over \tau
tcot0=ttot0 !tau_c over \tau
tctot0=1.0/3.0 ! tau_c\theta } over \tau
tpvot = tpvot0
tptot = tptot0
tpcot = tpcot0
ttot = ttot0
tcot = tcot0
tctot = tctot0
!
if (mnproc.eq.1) then
write(lp,900)
900 format('nasa-giss mixed layer model selected'/ &
'turbulence calculated by 040128 hycom version'/ &
'stripped down from 030803 turb_2gi1a ncar')
endif !1st proc
!
! --- START OF SALINITY MODEL BACKGROUND LENGTHSCALE CALCULATION SECTION.
! --- ifsali.eq. 1 therefore:
! --- Calculate constant lengthscale for
! --- the background for ifsalback=3,4,5
! --- \Delta_0 ={B_1 pi \over (3 Ko)^{3/2}} l_0
! --- l_0 = {(3 Ko)^{3/2} \over B_1 pi} \Delta_0
! --- "back_l_0" is the constant background
! --- l_0 in centimeters.
!
! --- pass back B_1 from oursal2.
call oursal2_1a(0.,0.,slq2b_00,smb_00,shb_00,ssb_00, &
c_y0,c_y00,0,0)
!
back_l_0 = (((3.*ako)**(3./2.))/(b1*pi))*back_del_0
!
if (mnproc.eq.1) then
write(lp,*) "Dubovikov Internal wave constants for background."
write(lp,*) "Ratio of Background to Critical ra_r"// &
" [\\equiv ({Ri_T}^2 + {Ri_C}^2)^(1/2)]",backfrac
write(lp,*) "Lengthscale, del_0/(cm) =",back_del_0
write(lp,*) "Lengthscale, l_0/(cm) =",back_l_0
call flush(lp)
endif !1st proc
!
! --- Set step-size for *both* dimensions of 2D table here.
! --- ifsali.eq. 1
dri = -ri0/real(mt0)
!
! --- BUILD SALINITY MODEL TABLES VS. "Ri = Ri_T + Ri_C" AND "Ri_d = Ri_T - Ri_C".
! --- Use separate loops for calculation of independent table variables.
!
do iridsign=0,1
iridstep=(-1)**iridsign
do irid= 0,mt*iridstep,iridstep
! --- Set Ri_d table values. (See NBP59,63=p#A27,30.)
if(abs(irid).le.mt0) then
ridb(irid) = real(irid)*dri
else
mt0s = mt0*iridstep
mtm1s = (mt0-1)*iridstep
! --- introduction of exponential absolute val table option.
if(ifexpabstable.eq. 0) then
idifs = (abs(irid)-mt0)*iridstep
ridb(irid) = ridb(mt0s)*((ridb(mt0s)/ &
ridb(mtm1s))**(idifs**2))
else if(ifexpabstable.eq. 1) then
idif = abs(irid)-mt0
ridb(irid) = ridb(mt0s)*((ridb(mt0s)/ &
ridb(mtm1s))**(idif))
endif
endif
!
enddo
enddo
!
do irisign=0,1
iristep=(-1)**irisign
do iri= 0,mt*iristep,iristep
! --- Set Ri table values. (See NBP59,63=p#A27,30.)
if(abs(iri).le.mt0) then
ribtbl(iri) = real(iri)*dri
else
mt0s = mt0*iristep
mtm1s = (mt0-1)*iristep
! --- introduction of exponential absolute val table option.
if(ifexpabstable.eq. 0) then
idifs = (abs(iri)-mt0)*iristep
ribtbl(iri) = ribtbl(mt0s)*((ribtbl(mt0s)/ &
ribtbl(mtm1s))**(idifs**2))
else if(ifexpabstable.eq. 1) then
idif = abs(iri)-mt0
ribtbl(iri) = ribtbl(mt0s)*((ribtbl(mt0s)/ &
ribtbl(mtm1s))**(idif))
endif
endif
!
enddo
enddo
!
! --- If using interp2d_expabs introduce ratio between adjacent Richardson
! --- numbers in nonlinear part of table.***
rri = ribtbl(mt0)/ribtbl(mt0-1)
!
do iridsign=0,1
iridstep=(-1)**iridsign
do irid= 0,mt*iridstep,iridstep
do irisign=0,1
iristep=(-1)**irisign
do iri= 0,mt*iristep,iristep
! --- Need to pass back the value of B_1 from oursal2 for use here.
call oursal2_1a(ribtbl(iri),ridb(irid),slq2b(iri,irid), &
smb(iri,irid),shb(iri,irid),ssb(iri,irid), &
c_y0,c_y00,iri,irid)
if(slq2b(iri,irid).lt.0) then
irimax(irid) = iri - 1
go to 15
endif
enddo
15 continue
enddo
!
enddo
enddo
!
! --- Add writes in salinity model case.
!diag if (mnproc.eq.1) then
!diag write(lp,*) "************************************************"
!diag write(lp,*) "New Temperature-Salinity Model"
!diag write(lp,*) "ifsali=",ifsali
!diag write(lp,*) "ifsalback=",ifsalback
!
!diag write(lp,*) "ifepson2=",ifepson2
!diag if(ifepson2.GT.0) then &
!diag write(lp,*) "epson2_ref=",epson2_ref
!diag WRITE(lp,*) "ifdeeplat=",ifdeeplat
!diag IF(ifdeeplat.GT.0) THEN
!diag WRITE(*,*) "eplatidepmin=",eplatidepmin
!diag END IF
!diag WRITE(*,*) "ifbotenhance=",ifbotenhance
!diag IF(ifbotenhance.EQ.1) THEN
!diag WRITE(*,*) "eps_bot0=",eps_bot0
!diag WRITE(*,*) "scale_bot=",scale_bot
!diag END IF
!diag END IF
!*****CD
!
!diag write(lp,*)"ifrafgmax=",ifrafgmax
!diag write(lp,*)"ifbg_theta_interp=",ifbg_theta_interp
!diag write(lp,*) &
!diag " i ", &
!diag " ribtbl(i) "," ridb(i) ", &
!diag "irimax(i) "
!diag do i= -mt,mt
!diag write(lp,9050) i,ribtbl(i),ridb(i),irimax(i)
!diag enddo
!
!diag write(lp,*) " "
!diag write(lp,*) "irid Ri_d Ri(irimax) " &
!diag // "S_M S_H S_S " &
!diag // "S_M/S_H S_S/S_H "
!diag do irid= -mt,mt
!diag write(lp,9100) irid,ridb(irid),ribtbl(irimax(irid)), &
!diag smb(irimax(irid),irid), &
!diag shb(irimax(irid),irid), &
!diag ssb(irimax(irid),irid), &
!diag smb(irimax(irid),irid)/shb(irimax(irid),irid), &
!diag ssb(irimax(irid),irid)/shb(irimax(irid),irid)
!diag enddo
!diag call flush(lp)
!diag endif !1st proc
!
! --- CALCULATE "R_r_Critical" USING CANUTO'S 000228 ANALYTIC FORMULA
! --- FOR "R_rho_Critical". See NBp.000229-3 and 000316-4.
! --- R_rho_Canuto \equiv -Ri_C/Ri_T \equiv -R_r .
! --- In a sheet dated 000228 Canuto gave me:
! --- "R_\rho^{cr} = {1 \over \Deta} [1 {+\over-} \sqrt{1 - \Delta^2}]
! --- \Delta \equiv {{\pi_2(1 + {15 \over 7} \pi_3)} \over
! --- {\pi_3 - \pi_2 + (15 \over 14} \pi_3^2}} ".
! --- Note that the + and - choices are reciprocals so this covers
! --- both the Salt Fingering and Double Diffusive Critical R_\rho's.
! --- From Ocean Turbulence III paper have:
! --- \pi_{1,2,3,4,5} =
! --- (\tau_pc,\tau_c\theta,\tau_c,\tau_p\theta,\tau_\theta)/\tau
! --- R_r_Crit = [-1 -/+ \sqrt{1 - \Delta^2}]/Delta
! --- \Delta = {{{\tau_c\theta \over \tau} ( 1 + (15/7)*{\tau_c \over \tau})}
! --- \over {{\tau_c \over \tau} - {\tau_c\theta \over \tau} +
! --- (15/14) {\tau_c \over \tau}^2}}
!
deltanum = tctot*(1. + ((15./7.)*tcot))
deltaden = tcot - tctot + ((15./14.)*(tcot**2))
delta = deltanum/deltaden
rrcrn = (-1. - sqrt(1. - (delta**2)))/delta
rrcrp = (-1. + sqrt(1. - (delta**2)))/delta
theta_rcrn = atan(rrcrn)
theta_rcrp = atan(rrcrp)
!
! --- Make sure the right choice of arctan(R_r)=[\theta_r] is made.
! --- Arctan covers the range (-pi/2,pi/2) while
! --- \theta_r_Crit must be in the range (-pi/4,3pi/4) (The range of Ri>0.)
!
if(theta_rcrn.lt.-pi/4.) theta_rcrn = theta_rcrn + pi
if(theta_rcrp.lt.-pi/4.) theta_rcrp = theta_rcrp + pi
theta_rcrn_deg = theta_rcrn*(180./pi)
theta_rcrp_deg = theta_rcrp*(180./pi)
!diag if (mnproc.eq.1) then
!diag write(lp,*) " "
!diag write(lp,*) " "
!diag write(lp,*) " "
!diag write(lp,*) " "
!diag write(lp,*) "R_r_Crit+ =",rrcrp
!diag write(lp,*) "R_r_Crit- =",rrcrn
!diag write(lp,*) "\\theta_r_Crit+ =",theta_rcrp
!diag write(lp,*) "\\theta_r_Crit- =",theta_rcrn
!diag write(lp,*) "\\theta_r_Crit+ in degrees =",theta_rcrp_deg
!diag write(lp,*) "\\theta_r_Crit- in degrees =",theta_rcrn_deg
!diag write(lp,*) " "
!diag write(lp,*) " "
!
!diag write(lp,*) " "
!diag write(lp,*) " "
!diag call flush(lp)
!diag endif !1st proc
!
! --- Increments in radial and angular coordinates in (Ri_T,Ri_C) plane.
!
delra_r = 1./real(mt_ra_r)
! deltheta_r = (pi/4.)/real(n_theta_r_oct)
!
! --- Natassa
! if (mnproc.eq.1) then
! write(53,*)nstep,igrid,jgrid,n_theta_r_oct,deltheta_r
! endif !1st proc
!
! --- Calculate the ratio \sigma_sa_max \equiv S_S/S_H as a function
! --- of the angle \theta_r in Ri_T,Ri_C space,
! --- \theta_r \equiv arctan(Ri_C/Ri_T).
! --- The range of angles where unrealizability occurs is
! --- a subset of theta_r = -pi/4 to 3pi/4.
!
!diag if (mnproc.eq.1) then
!diag write(lp,*) "S_S/S_H at pre-maximum Ri as a function of" &
!diag // "\\theta_r \\equiv Arctan(Ri_C/Ri_T)"
!
! --- Absurd default on sisamax \equiv S_S/S_H.
!diag write(lp,*) "Arbitrarily show the absurd value -99.999"
!diag write(lp,*) "at angles where do not have "// &
!diag "a maximum Ri (or radius ra_r)."
!diag write(lp,*) " "
!diag write(lp,*) " \\th_r ^o ra_r " &
!diag // " Ri_T Ri_C Ri Ri_d " &
!diag // " S_M S_H S_S S_S/S_H "
!diag call flush(lp)
!diag endif !1st proc
!
! --- For Ri_T and Ri_C positive find the realizability limits
! --- in polar coordinates in the (Ri_T,Ri_C) plane : (ra_r,theta_r).
!
if(ifpolartablewrite.eq. 1 .and. mnproc.eq.1) then
open(unit=uoff+98,file="turb_ra_th",status="unknown")
endif
do itheta_r = -n_theta_r_oct,3*n_theta_r_oct
! do ihelp = 0,4*n_theta_r_oct
! itheta_r=ihelp-n_theta_r_oct
theta_r = real(itheta_r)*deltheta_r
theta_r_deg = theta_r*(180./pi)
!
! --- Introduce jtheta_r, an angle index that begins at zero
! --- for the purposes of letting OURSAL2 know it starts at the origin.
!
jtheta_r = itheta_r + n_theta_r_oct
!
! --- Initialize sisamax to the impossible negative value of -99.999 to
! --- let places where the realizability limit is not reached stand out.
sisamax(itheta_r) = -99.999
!
! --- Initialize sm_r0,sh_r0,ss_r0 to the INCONSISTENT absurd value -9.999999.
sm_r0 = -9.999999
sh_r0 = -9.999999
ss_r0 = -9.999999
!
! --- Flag ibg determines if the background value of ra_r has been calculated.
if(ifsalback.eq. 6) ibg=0
!
! --- Flag ifunreal determines if realizability limit has been found.
ifunreal=0
!
! --- Make the ra_r max value not too large to try to avoid numerical trouble.
!
do ira_r = 0,(mt_ra_r**2)/4
!
if(ira_r.le.mt_ra_r) then
ra_r = real(ira_r)*delra_r
else
ra_r = ((1.+delra_r)**(ira_r - mt_ra_r)) &
*(real(mt_ra_r)*delra_r)
endif
!
! --- Convert radius and angle, (ra_r,theta_r), to rectangular coordinates.
rit = ra_r*COS(theta_r)
ric = ra_r*SIN(theta_r)
ri_r = rit + ric
rid_r = rit - ric
!
! --- Calculate turbulence functions at this radius and angle in (Ri_T,Ri_C).
!
call oursal2_1a(ri_r,rid_r,slq2_r,sm_r,sh_r,ss_r, &
c_y0,c_y00,ira_r,jtheta_r)
!
if(ifpolartablewrite.eq. 1 .and. mnproc.eq.1) then
write(uoff+98,9001) &
itheta_r,theta_r_deg,ira_r,ra_r,slq2_r,sm_r,sh_r,ss_r
endif
!
! --- Calculate S_M/(S l/q) and find where it's backfact of its origin value.
if(ifsalback.eq. 6) then
smosloq_r = sm_r/sqrt(slq2_r)
if(ira_r.eq. 0) smosloq_0r = smosloq_r
! --- Use radius where dimensionless K_M falls below backfact*origin value.
if((smosloq_r.le.backfact*smosloq_0r).AND. &
(ibg.eq. 0) ) then
ra_r1 = ra_r
rit1 = rit
ric1 = ric
ri_r1 = ri_r
rid_r1 = rid_r
slq2_r1(itheta_r) = slq2_r
sm_r1(itheta_r) = sm_r
sh_r1(itheta_r) = sh_r
ss_r1(itheta_r) = ss_r
ibg=1
endif
endif
!
if(slq2_r.le.0.) then
! --- Use value of last lattice point on this radius with "slq2" positive.
! --- Calculate the ratio of the salt and heat diffusivities there.
sisamax(itheta_r) = ss_r0/sh_r0
!
! --- Store in an array the maximum radius, ra_r, at this angle, theta_r,
! --- in the polar (Ri_T,Ri_C) [that is the (theta_r,ra_r)] plane.
ra_rmax(itheta_r) = ra_r0
!
! --- Determine the background radius, ra_r, at this \theta_r.
if(ifsalback.eq. 5) then
! --- Use a constant fraction of the maximum radius before model breakdown.
back_ra_r(itheta_r) = backfrac*ra_rmax(itheta_r)
!
else if(ifsalback.eq. 6) then
back_ra_r(itheta_r) = ra_r1
endif
!
ifunreal = 1
!
! --- Skip straight to write out when last point reached.
go to 16
endif
!
ra_r0 = ra_r
rit0 = rit
ric0 = ric
ri_r0 = ri_r
rid_r0 = rid_r
slq2_r0 = slq2_r
sm_r0 = sm_r
sh_r0 = sh_r
ss_r0 = ss_r
!
! --- Store c_y as c_y_0 for possible use as a guess in background calc.
c_y_r0(itheta_r) = c_y0
!
enddo
!
! --- Write out stability functions, the S's and sisamax.
16 continue
!diag if (mnproc.eq.1) then
!diag write(lp,9150) theta_r_deg,ra_r0,rit0,ric0,ri_r0,rid_r0, &
!diag sm_r0,sh_r0,ss_r0,sisamax(itheta_r)
!diag call flush(lp)
!diag endif !1st proc
!
! --- Set background ra_r large at angles where unrealizability doesn't occur.
! --- Make the ra_r max value not too large to try to avoid numerical trouble.
if(ifunreal.eq. 0) then
ipenra_r = (mt_ra_r**2)/4-1
back_ra_r(itheta_r) = ((1.+delra_r)**(ipenra_r - mt_ra_r)) &
*(real(mt_ra_r)*delra_r)
endif
!
! --- For ifsalback=5 case get value for initialization of c_y calculation.
if(ifsalback.eq. 5) then
if(jtheta_r.eq. 0) then
c_y001 = c_y0
endif
endif
!
enddo
!
if(ifpolartablewrite.eq. 1 .and. mnproc.eq.1) then
close(uoff+98)
endif
!
! --- Write out stability functions at background ra_r .
if(ifsalback.GT.4) then
do itheta_r = -n_theta_r_oct,3*n_theta_r_oct
theta_r = real(itheta_r)*deltheta_r
theta_r_deg = theta_r*(180./pi)
!
! --- Convert radius and angle, (ra_r,theta_r), to rectangular coordinates.
rit1 = back_ra_r(itheta_r)*COS(theta_r)
ric1 = back_ra_r(itheta_r)*SIN(theta_r)
ri_r1 = rit1 + ric1
rid_r1 = rit1 - ric1
!
! --- Calculation of turbulence functions for ifsalback=5 case.
if(ifsalback.eq. 5) then
!
! --- Calculate turbulence functions at this radius and angle in (Ri_T,Ri_C).
jtheta_r = itheta_r + n_theta_r_oct
!
! --- Set second table index to 1 to use last step's value except at start.
! --- Transform that "last step" value from the most recent angle step to the
! --- final realizable ra_r step at {\it this} angle in hope of more accuracy.
call oursal2_1a(ri_r1,rid_r1,slq2_r1(itheta_r), &
sm_r1(itheta_r),sh_r1(itheta_r),ss_r1(itheta_r), &
c_y_r0(itheta_r),c_y001,jtheta_r,1)
endif
!
!diag if(itheta_r.eq. -n_theta_r_oct) then
!diag if (mnproc.eq.1) then
!diag write(lp,*) " "
!diag write(lp,*) &
!diag "Values at background ra_r=(Ri_T^2 + Ri_C^2)^(1/2)"
!diag write(lp,*) "\\th_r ^o ra_r " &
!diag // "Ri_T Ri_C Ri Ri_d " &
!diag // "(Sl/q)^2 S_M S_H S_S S_S/S_H "
!diag write(lp,*) " "
!diag call flush(lp)
!diag endif !1st proc
!diag endif
!
sisa1 = ss_r1(itheta_r)/sh_r1(itheta_r)
!
! if (mnproc.eq.1) then
! write(lp,*)
! & 'itheta_r,theta_r_deg = ',itheta_r,theta_r_deg
! write(lp,*)
! & 'back_ra_r,slq2_r1 = ',
! & back_ra_r(itheta_r),slq2_r1(itheta_r)
! write(lp,*)
! & 'sm_r1,sh_r1,ss_r1 = ',
! & sm_r1(itheta_r),sh_r1(itheta_r),ss_r1(itheta_r)
! call flush(lp)
! endif !1st proc
!diag if (mnproc.eq.1) then &
!diag write(lp,9160) theta_r_deg,back_ra_r(itheta_r), &
!diag rit1,ric1,ri_r1,rid_r1,slq2_r1(itheta_r), &
!diag sm_r1(itheta_r),sh_r1(itheta_r),ss_r1(itheta_r), &
!diag sisa1
!diag call flush(lp)
!diag endif !1st proc
!
if(slq2_r1(itheta_r).lt.0.) then
if (mnproc.eq.1) then
write(lp,*) &
"Negative (Sl/q)^2 in table of Background vs. \\theta_r."
write(lp,*) "itheta_r=",itheta_r, &
" slq2_r1(itheta_r)=",slq2_r1(itheta_r)
write(lp,*) "Program is stopping in turb_2."
endif !1st proc
call xcstop('(inigiss)')
stop '(inigiss)'
endif
enddo
endif
!
!
9001 format(2(I8,' ',1pe11.3),8(1pe11.3))
9050 format(I8,' ',2E16.4,I8,' ')
9100 format(' ',I8,' ',2E12.4,3F11.6,2F11.4)
9150 format(F11.3,5E12.4,3F10.6,F9.3)
9160 format(F11.3,1x,6(E10.4,1x),3(F10.6,1x),F9.3)
9200 format(I12,' ',5E16.6)
!
return
end
!
subroutine oursal2_1a(ri,rid,slq2,sm,sh,sc,c_y0,c_y00,iri,irid)
use mod_xc ! HYCOM communication interface
use mod_cb_arrays ! HYCOM saved arrays
!
! --- hycom version 1.0
implicit none
!
! --- Replace the numerical value of 6.25 by 1/(tpvot**2) .
! --- Version in which following OTsalche/plot000127
! --- the timescale ratios are calculated in the 'smshsc' routine
! --- and passed back hrough the common block /bb/
! --- to simplify the process of adjustment of timescale ratios.
! --- Submodule to calculate turbulence functions (Sl/q)^2 and S_M,S_H,S_S
! --- of Ri(=Ri_T+Ri_C) and Ri_d(=Ri_T-Ri_C) in our NCAR turbulence module.
! --- Stripped and adapted from plot981007.f.
! --- Program to generate contour and 1 variable plots vs. Ri,Ri_d based on
! --- Program to generate contour plots vs. Ri_T and Ri_C based on
! --- Program to generate plots vs. Ri_T at different Ri_C values based on
! --- .or.eC.eD PROGRAM WITH .eW VAL.e OF "p10". 'p10 = tpt*tct/(tc**2)'
! --- Program to generate K_X/((l^2) S) for Canuto based on plot980609.f:
! --- Program to generate data for plots of turbulence functions including
! --- S_{M,H,C} and Canuto's new y = (\tau_pv S)^2
! --- and n,c as functions of stability parameters in the concentration theory
! --- (structure is a 1 point closure like the generalized Mellor-Yamada,
! --- but the constants are derived based on Dubovikov's model according
! --- to Ye Cheng). The concentration theory dimensionless parameters
! --- associated with the squares of shear, temperature contribution to
! --- Brunt Vaisala frequency and concentration contribution to it,
! --- the new y,n,c are represented in this program by the variables
! --- c_y,c_n,c_c.
! --- Adapted from Cheng's program mike_12.f_980528 for the Dubovikov model.
!-----------------------------------------------------------------------
!
! --- y=(tau*s)**2
! --- tau=2*e/epsilon=b1*l/q
! --- km=e*tau*sm=1/2*(b1*l)**2*s/y**(1/2)*sm
! --- kh=e*tau*sh=1/2*(b1*l)**2*s/y**(1/2)*sh
! --- ks=e*tau*ss=1/2*(b1*l)**2*s/y**(1/2)*ss
!
! --- X = {M,H,C} .
! --- Cheng above gives K_X = (1/2)((B_1*l)^2) (S/(((\tau S)**2)^(1/2))) S_X
! --- The "old" y used above is (\tau S)^2.
! --- The "new" y (c_y in the program) is (\tau_pv S)^2.
! --- The program variable "slq2" is (S l/q)^2 = y (B_1)^(-2),
! --- since \tau=B_1 l/q. (S l/q)^2 = (\tau \over \tau_pv)^2 c_y (B_1)^(-2) .
! --- c_y = (S l/q)^2 * [(B_1)^2 * (\tau_pv \over \tau)^2] .
!
! --- Take \tau_pv/\tau as being calculated in the smshsc routine instead.
! --- From the printed notes Canuto gave me on 980601 have:
! --- \tau_pv = {2 \over 5} \tau (B.1) or parameter(tpvot = 0.4)
!
real ri,rid,slq2,sm,sh,sc,c_y0,c_y00
real eeps,c_yst,c_yst0,c_y,val,c_n,c_c
!DBI: all eps ==> eeps in this routine!
integer iri,irid,iend,ier
real rit,ric
common /bb/rit,ric !rit is the temperature's part of
!Ri and ric the concentration's.
save /bb/
!
parameter(c_yst0 = 8.527882) !Need a guess for c_y for the solver
!for the neutral case, c_yst. Take
!c_yst = 8.527882, the approximate value
!calculated at rit=ric=0. A variable c_y00
!is intended to hold the Ri=0 value of c_y
!from the previous Ri_d row in a table the
!subroutine is being called to make and a
!variable c_y0 is intended to hold the
!previous Ri value from the current Ri_d
!row of that table.
b1=16.6
!
! --- Commented excerpt from the file "sx"
!
! --- sgmt := 0.72;
!
! --- tpt := 1/(5*(1+1/sgmt))*tau;
! --- tpt = .08372093019*tau
!
! --- tpc := 1/(5*(1+1/sgmt))*tau;
! --- tpc = .08372093019*tau
!
! --- tt := sgmt*tau;
! --- tt = .72*tau
!
! --- tc := sgmt*tau;
! --- tc = .72*tau
!
! --- tct := 2/15*sgmt*tau;
! --- tct = .09599999998*tau
!
! --- Calculate the timescale ratios in the 'smshsc' routine instead of here.
! --- Set \sigma_t0. sgmt = .72
!
! --- Calculate {\tau_C \over \tau} and {\tau_{C\theta} \over \tau}.
! --- tcot = sgmt
! --- tctot = (2./15.)*sgmt
! --- "tpt/tau" and "tpc/tau" from the "sx" excerpt
! --- tptot = 1./(5.*(1+1/sgmt))
! --- tpcot = 1./(5.*(1+1/sgmt))
!
! --- Timescale ratios are now calculated in the 'smshsc' subroutine.
! --- Make dummy call with c_y=c_n=c_c=0 to get their values for initial use.
call smshsc_a3(0.,0.,0.,sm,sh,sc)
!
eeps=1.e-6
iend=300
!
! --- rimax= ?
! --- rtwi finds the root of x=fct_sal(x)
! --- Need a guess at the root, c_yst. Use neighboring solution.
! --- Initial guess for c_yst for this value of Ri_d.
if(iri.eq.0.and.irid.eq.0) then
c_yst = c_yst0
else if(iri.eq.0) then
c_yst = c_y00
else
c_yst = c_y0
endif
!
! --- Calculate Ri_T =(Ri + Ri_d)/2 and Ri_C =(Ri - Ri_d)/2.
rit = (ri + rid)/2.
ric = (ri - rid)/2.
call rtwi(c_y,val,c_yst,eeps,sm,sh,sc,iend,ier)
!
if(ier.ne.0) then
! --- Make error message more specific.
if (mnproc.eq.1) then
write(lp,*) "In oursal2 subroutine"
write(lp,*) "c_y00=",c_y00," c_y0=",c_y0
write(lp,*) "ri=",ri," rid=",rid
write(lp,*) "rit=",rit," ric=",ric
write(lp,*) "Initial guess for rtwi c_yst=",c_yst
!
write(lp,*) "rtwi call problem, ier=",ier
endif !1st proc
call xcstop('(oursal2_1a)')
stop '(oursal2_1a)'
endif
!
! --- Calculate (S l/q)^2[=program variable "slq2"] from c_y.**
! --- (S l/q)^2 = (\tau \over \tau_pv)^2 c_y (B_1)^(-2) .
! --- (S l/q)^2 = (\tau_pv \over \tau)^(-2) c_y (B_1)^(-2) .
slq2 = c_y/((b1*tpvot)**2)
!
! --- Store value of c_y for future guesses.
if(c_y.ge.0) then
c_y0=c_y
else
! --- Turbulence model becomes unphysical for c_y negative.
! --- Realizability for negative Ri
if(ri.lt.0) then
if (mnproc.eq.1) then
write(lp,*) "c_y negative at negative Ri"
write(lp,*) "Ri=",ri," c_y=",c_y
write(lp,*) "Unstable realizability limit unexpected:"
write(lp,*) "stopping in oursal2."
endif !1st proc
call xcstop('(oursal2_1a)')
stop '(oursal2_1a)'
endif
endif
!
if(iri.eq.0) c_y00=c_y
if((iri.eq.0).and.(irid.eq.0).and. &
(abs(c_y - c_yst0).gt.1.e-6)) then
if (mnproc.eq.1) then
write(lp,*) "Inconsistency in neutral value of c_y"
write(lp,*) "Value used =",c_yst0
write(lp,*) "Value calculated =",c_y
write(lp,*) "Program stopping in oursal2"
endif !1st proc
call xcstop('(oursal2_1a)')
stop '(oursal2_1a)'
endif
!
! --- From last page (#5) of "980608 AH Concentration Work" handwritten
! --- sheetsC have:
! --- n = -{{\tau_C \tau_{C\theta}} \over {\tau_{pv}}^2 } y Ri_T
! --- c = - {{\tau_C}^2 \over {\tau_{pv}}^2} y Ri_C
! --- Decide to use the parameter "tpvot" instead of its value 2/5 \tau .
! --- n = -{{(\tau_C/\tau) (\tau_{C\theta}/\tau)} \over {\tau_{pv}/\tau}^2 }
! --- y Ri_T
! --- c = - {{\tau_C/\tau}^2 \over {\tau_{pv}/\tau}^2} y Ri_C
!
c_n = -(tcot*tctot/(tpvot**2))*c_y*rit
c_c = -((tcot**2)/(tpvot**2))*c_y*ric
call smshsc_a3(c_y,c_n,c_c,sm,sh,sc)
!
!
1003 format(12(I8))
1004 format(12(1pe14.5))
end
!-----------------------------------------------------------------------
function fct_sal(sm,sh,sc,c_y)
use mod_xc ! HYCOM communication interface
use mod_cb_arrays ! HYCOM saved arrays
!
! --- hycom version 1.0
implicit none
!
real fct_sal,c_n,c_c,c_y,sm,sh,sc
!
real rit,ric
common /bb/rit,ric
save /bb/
!
! --- Decide to use the parameter "tpvot" instead of its value 2/5 \tau .
c_n = -((tcot*tctot)/(tpvot**2))*c_y*rit
c_c = -((tcot**2)/(tpvot**2))*c_y*ric
call smshsc_a3(c_y,c_n,c_c,sm,sh,sc)
!
! --- y(S_\nu - Ri_T S_h - Ri_C S_c) = 8/25 . 8/25 = 0.32 . S_\nu = sm.
! --- y = 0.32/(S_\nu - Ri_T S_h - Ri_C S_c).
fct_sal=(2.*(tpvot**2))/(sm-rit*sh-ric*sc)
return
end
!-----------------------------------------------------------------------
subroutine smshsc_a3(yyy,nnn,ccc,sm,sh,sc)
use mod_xc ! HYCOM communication interface
use mod_cb_arrays ! HYCOM saved arrays
!
! --- hycom version 1.0
implicit none
!
! --- .eW SUBROUTI.e WHICH calculates the "p's" from the timescale ratios.
! --- BA.eD on "smshsc2":
! --- SUBROUTI.e WHICH CALCULA.eS "p's" from "sgmt". BA.eD ON "smshsc1":
! --- .eW SUBROUTI.e WHICH U.eS .e C.eNG'S .orTRAN CO.e TO CALCULA.e CONSTANTS
! --- FROM T.e "p's" .eNT TO .e BY HIM TODAY. BA.eD ON "smshsc0".
! --- **.or.eCT T.e VAL.e OF "p10".**
! --- p_10 = {\tau_{p \theta} \tau_{c \theta}} \over {\tau_c ^ 2}
!
! --- Replace Cheng's smsh with smshsc, which includes concentration.
! --- The y,n,c used here are Canuto's "y,n,c" called c_y,c_n,c_c
! --- elsewhere in this program.
real yyy,nnn,ccc,sm,sh,sc
real Nm,Nh,Nc
!
real p1,p2,p3,p4,p5,p6,p7,p8,p9,p10,p11,p1m,p2m
real a0,a1,a2,a3,a4,a5
real d0,d1,d2,d3,d4,d5,d6,d7,d8,d9,d10,d11,d12,d13,d14,d15
real D
!
integer ifrecall,ifmodelconstout
!
! --- Switch for whether(1) or not(0) to output p's a's and d's to a file.
parameter(ifmodelconstout=0)
!
! --- Add `\tau_pv \over \tau' to the common block with timescale ratios.
!
! --- Calculate the p's.
p1 = 0.832
p2 = 0.545
p3 = (5./2.)*tpcot
p4 = (1./5.)*tpcot*(tcot**(-2))
p5 = tpcot*tctot*(tcot**(-2))
p6 = (1./5.)*(tcot**(-1))*(tctot**(-1))*tptot
p7 = 5.*tctot
p8 = (5./2.)*tptot
p9 = ttot*tptot*((tcot*tctot)**(-1))
p10 = tctot*tptot*(tcot**(-2))
p11 = tpcot*(tcot**(-1))
p1m = 1. - p1
p2m = 1. - p2
!
!-----------------------------------------------------------------------
!results.2_1
! --- Values of a's and d's calculated from p's using Cheng's Fortran code
! --- to do so, from today's email from him, cheng990513.results.2_1 .
! --- results.2_1
!##########################
!## Fortran code:
!##########################
A0 = 12
A1 = p11*(12*p9+8*p6-30*p6*p8-5*p6*(p1m+3*p2m))
A2 = 5*(2*p4*p6*p7-p4*p9-p6*p11)*(p1m+3*p2m)+8*p6*p11+8*p4*p9- &
16*p4*p6*p7+12*p11*p9+12*p11*p10-12*p4*p7**2*p6- &
30*p6*p11*p8+30*p4*p6*p7*p8+30*p6*p4*p7*p3-30*p4*p9*p3
A3 = p10*(12*p11+8*p4-30*p3*p4-5*p4*(p1m+3*p2m))
A4 = -p6*(8-30*p8-5*p1m-15*p2m)-12*p9-12*p11
A5 = -p4*(8-30*p3-5*p1m-15*p2m)-12*p10-12*p11
D0 = 24
D1 = p11*((-p6-2*p9)*p1m**2+(p6+6*p9)*p2m**2+2*p6*p8*(p1m-3*p2m))
D2 = (2*p4*p6*p7-p4*p9-p6*p11)*(p1m**2-p2m**2)+ &
2*(-p11*p10-p11*p9+p4*p7**2*p6)*(p1m**2-3*p2m**2)+ &
2*(-p6*p4*p7*p3-p4*p6*p7*p8+p4*p9*p3+p6*p11*p8)*(p1m-3*p2m)
D3 = p10*((-p4-2*p11)*p1m**2+2*p4*p3*(p1m-3*p2m)+(6*p11+p4)*p2m**2)
D4 = -4*p6*p11*(3*p9+2*p6)
D5 = 4*p4*p6**2*p7*(4+3*p7)-4*p4*p9*(3*p11+2*p6)- &
4*p6*p11*(3*p9+3*p10+2*p4+2*p6)
D6 = 4*p4**2*p6*p7*(4+3*p7)-4*p4*p9*(2*p4+3*p11)- &
8*p4*p6*(p11+p10)-12*p10*p11*(p4+p6)
D7 = -4*p4*p10*(2*p4+3*p11)
D8 = (2*p9+2*p11+p6)*p1m**2-2*p6*p8*(p1m-3*p2m)- &
(p6+6*p9+6*p11)*p2m**2
D9 = (2*p10+p4+2*p11)*p1m**2-2*p4*p3*(p1m-3*p2m)- &
(p4+6*p10+6*p11)*p2m**2
D10 = 8*p6**2+4*(7*p11+3*p9)*p6+24*p11*p9
D11 = -8*(4+3*p7)*p4*p6*p7+4*p4*(4*p6+7*p9+3*p11)+ &
4*p6*(3*p10+7*p11)+24*p11*(p10+p9)
D12 = 4*p10*(7*p4+6*p11)+4*p4*(2*p4+3*p11)
D13 = 6*p2m**2-2*p1m**2
D14 = -28*p6-24*p9-24*p11
D15 = -24*p10-28*p4-24*p11
!results.2_1
!-----------------------------------------------------------------------
!
! --- Write out the p's.
! --- Writeout the timescale ratios as well.
ifrecall=1
if(ifrecall.eq.0 .and. mnproc.eq.1) then
write(lp,*) "tau_pv/tau =",tpvot
write(lp,*) "tau_ptheta/tau =",tptot
write(lp,*) "tau_pc/tau =",tpcot
write(lp,*) "tau_theta/tau =",ttot
write(lp,*) "tau_c/tau =",tcot
write(lp,*) "tau_ctheta/tau =",tctot
write(lp,*) " "
write(lp,*) "p1 =",p1
write(lp,*) "p2 =",p2
write(lp,*) "p3 =",p3
write(lp,*) "p4 =",p4
write(lp,*) "p5 =",p5
write(lp,*) "p6 =",p6
write(lp,*) "p7 =",p7
write(lp,*) "p8 =",p8
write(lp,*) "p9 =",p9
write(lp,*) "p10=",p10
write(lp,*) "p11=",p11
!
! --- Write out the a's and d's as well.
write(lp,*) "a0=",a0
write(lp,*) "a1=",a1
write(lp,*) "a2=",a2
write(lp,*) "a3=",a3
write(lp,*) "a4=",a4
write(lp,*) "a5=",a5
write(lp,*) "d0=",d0
write(lp,*) "d1=",d1
write(lp,*) "d2=",d2
write(lp,*) "d3=",d3
write(lp,*) "d4=",d4
write(lp,*) "d5=",d5
write(lp,*) "d6=",d6
write(lp,*) "d7=",d7
write(lp,*) "d8=",d8
write(lp,*) "d9=",d9
write(lp,*) "d10=",d10
write(lp,*) "d11=",d11
write(lp,*) "d12=",d12
write(lp,*) "d13=",d13
write(lp,*) "d14=",d14
write(lp,*) "d15=",d15
!
! --- Output p#, a# and d# to the file model_constants if the switch is set.
! --- Writeout the timescale ratios as well.
if(ifmodelconstout.eq.1 .and. mnproc.eq.1) then
open(unit=uoff+98,file='model_constants',status='unknown')
write(uoff+98,*) "tau_pv/tau =",tpvot
write(uoff+98,*) "tau_ptheta/tau =",tptot
write(uoff+98,*) "tau_pc/tau =",tpcot
write(uoff+98,*) "tau_theta/tau =",ttot
write(uoff+98,*) "tau_c/tau =",tcot
write(uoff+98,*) "tau_ctheta/tau =",tctot
write(uoff+98,*) " "
write(uoff+98,*) "p1 =",p1
write(uoff+98,*) "p2 =",p2
write(uoff+98,*) "p3 =",p3
write(uoff+98,*) "p4 =",p4
write(uoff+98,*) "p5 =",p5
write(uoff+98,*) "p6 =",p6