-
Notifications
You must be signed in to change notification settings - Fork 19
/
operations.py
591 lines (472 loc) · 25.9 KB
/
operations.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
# -*- coding: utf-8 -*-
"""
@author: HYPJUDY 2019/4/15
https://github.com/HYPJUDY
Decoupling Localization and Classification in Single Shot Temporal Action Detection
-----------------------------------------------------------------------------------
Operations used by Decouple-SSAD
"""
import pandas as pd
import pandas
import numpy as np
import numpy
import os
import tensorflow as tf
from os.path import join
#################################### TRAIN & TEST #####################################
def abs_smooth(x):
"""Smoothed absolute function. Useful to compute an L1 smooth error.
Define as:
x^2 / 2 if abs(x) < 1
abs(x) - 0.5 if abs(x) > 1
We use here a differentiable definition using min(x) and abs(x). Clearly
not optimal, but good enough for our purpose!
"""
absx = tf.abs(x)
minx = tf.minimum(absx, 1)
r = 0.5 * ((absx - 1) * minx + absx)
return r
def jaccard_with_anchors(anchors_min, anchors_max, len_anchors, box_min, box_max):
"""Compute jaccard score between a box and the anchors.
"""
int_xmin = tf.maximum(anchors_min, box_min)
int_xmax = tf.minimum(anchors_max, box_max)
inter_len = tf.maximum(int_xmax - int_xmin, 0.)
union_len = len_anchors - inter_len + box_max - box_min
jaccard = tf.div(inter_len, union_len)
return jaccard
def loop_condition(idx, b_anchors_rx, b_anchors_rw, b_glabels, b_gbboxes,
b_match_x, b_match_w, b_match_labels, b_match_scores):
r = tf.less(idx, tf.shape(b_glabels))
return r[0]
def loop_body(idx, b_anchors_rx, b_anchors_rw, b_glabels, b_gbboxes,
b_match_x, b_match_w, b_match_labels, b_match_scores):
num_class = b_match_labels.get_shape().as_list()[-1]
label = b_glabels[idx][0:num_class]
box_min = b_gbboxes[idx, 0]
box_max = b_gbboxes[idx, 1]
# ground truth
box_x = (box_max + box_min) / 2
box_w = (box_max - box_min)
# predict
anchors_min = b_anchors_rx - b_anchors_rw / 2
anchors_max = b_anchors_rx + b_anchors_rw / 2
len_anchors = anchors_max - anchors_min
jaccards = jaccard_with_anchors(anchors_min, anchors_max, len_anchors, box_min, box_max)
# jaccards > b_match_scores > -0.5 & jaccards > matching_threshold
mask = tf.greater(jaccards, b_match_scores)
matching_threshold = 0.5
mask = tf.logical_and(mask, tf.greater(jaccards, matching_threshold))
mask = tf.logical_and(mask, b_match_scores > -0.5)
imask = tf.cast(mask, tf.int32)
fmask = tf.cast(mask, tf.float32)
# Update values using mask.
# if overlap enough, update b_match_* with gt, otherwise not update
b_match_x = fmask * box_x + (1 - fmask) * b_match_x
b_match_w = fmask * box_w + (1 - fmask) * b_match_w
ref_label = tf.zeros(tf.shape(b_match_labels), dtype=tf.int32)
ref_label = ref_label + label
b_match_labels = tf.matmul(tf.diag(imask), ref_label) + tf.matmul(tf.diag(1 - imask), b_match_labels)
b_match_scores = tf.maximum(jaccards, b_match_scores)
return [idx + 1, b_anchors_rx, b_anchors_rw, b_glabels, b_gbboxes,
b_match_x, b_match_w, b_match_labels, b_match_scores]
def default_box(layer_steps, scale, a_ratios):
width_set = [scale * ratio for ratio in a_ratios]
center_set = [1. / layer_steps * i + 0.5 / layer_steps for i in range(layer_steps)]
width_default = []
center_default = []
for i in range(layer_steps):
for j in range(len(a_ratios)):
width_default.append(width_set[j])
center_default.append(center_set[i])
width_default = np.array(width_default)
center_default = np.array(center_default)
return width_default, center_default
def anchor_box_adjust(anchors, config, layer_name, pre_rx=None, pre_rw=None):
if pre_rx == None:
dboxes_w, dboxes_x = default_box(config.num_anchors[layer_name],
config.scale[layer_name], config.aspect_ratios[layer_name])
else:
dboxes_x = pre_rx
dboxes_w = pre_rw
anchors_conf = anchors[:, :, -3]
# anchors_conf=tf.nn.sigmoid(anchors_conf)
anchors_rx = anchors[:, :, -2]
anchors_rw = anchors[:, :, -1]
anchors_rx = anchors_rx * dboxes_w * 0.1 + dboxes_x
anchors_rw = tf.exp(0.1 * anchors_rw) * dboxes_w
# anchors_class=anchors[:,:,:config.num_classes]
num_class = anchors.get_shape().as_list()[-1] - 3
anchors_class = anchors[:, :, :num_class]
return anchors_class, anchors_conf, anchors_rx, anchors_rw
# This function is mainly used for producing matched ground truth with
# each adjusted anchors after predicting one by one
# the matched ground truth may be positive/negative,
# the matched x,w,labels,scores all corresponding to this anchor
def anchor_bboxes_encode(anchors, glabels, gbboxes, Index, config, layer_name, pre_rx=None, pre_rw=None):
num_anchors = config.num_anchors[layer_name]
num_dbox = config.num_dbox[layer_name]
# num_classes = config.num_classes
num_classes = anchors.get_shape().as_list()[-1] - 3
dtype = tf.float32
anchors_class, anchors_conf, anchors_rx, anchors_rw = \
anchor_box_adjust(anchors, config, layer_name, pre_rx, pre_rw)
batch_match_x = tf.reshape(tf.constant([]), [-1, num_anchors * num_dbox])
batch_match_w = tf.reshape(tf.constant([]), [-1, num_anchors * num_dbox])
batch_match_scores = tf.reshape(tf.constant([]), [-1, num_anchors * num_dbox])
batch_match_labels = tf.reshape(tf.constant([], dtype=tf.int32),
[-1, num_anchors * num_dbox, num_classes])
for i in range(config.batch_size):
shape = (num_anchors * num_dbox)
match_x = tf.zeros(shape, dtype)
match_w = tf.zeros(shape, dtype)
match_scores = tf.zeros(shape, dtype)
match_labels_other = tf.ones((num_anchors * num_dbox, 1), dtype=tf.int32)
match_labels_class = tf.zeros((num_anchors * num_dbox, num_classes - 1), dtype=tf.int32)
match_labels = tf.concat([match_labels_other, match_labels_class], axis=-1)
b_anchors_rx = anchors_rx[i]
b_anchors_rw = anchors_rw[i]
b_glabels = glabels[Index[i]:Index[i + 1]]
b_gbboxes = gbboxes[Index[i]:Index[i + 1]]
idx = 0
[idx, b_anchors_rx, b_anchors_rw, b_glabels, b_gbboxes,
match_x, match_w, match_labels, match_scores] = \
tf.while_loop(loop_condition, loop_body,
[idx, b_anchors_rx, b_anchors_rw,
b_glabels, b_gbboxes,
match_x, match_w, match_labels, match_scores])
match_x = tf.reshape(match_x, [-1, num_anchors * num_dbox])
batch_match_x = tf.concat([batch_match_x, match_x], axis=0)
match_w = tf.reshape(match_w, [-1, num_anchors * num_dbox])
batch_match_w = tf.concat([batch_match_w, match_w], axis=0)
match_scores = tf.reshape(match_scores, [-1, num_anchors * num_dbox])
batch_match_scores = tf.concat([batch_match_scores, match_scores], axis=0)
match_labels = tf.reshape(match_labels, [-1, num_anchors * num_dbox, num_classes])
batch_match_labels = tf.concat([batch_match_labels, match_labels], axis=0)
return [batch_match_x, batch_match_w, batch_match_labels, batch_match_scores,
anchors_class, anchors_conf, anchors_rx, anchors_rw]
def in_conv(layer, initer=tf.contrib.layers.xavier_initializer(seed=5)):
net = tf.layers.conv1d(inputs=layer, filters=1024, kernel_size=3, strides=1, padding='same',
activation=tf.nn.relu, kernel_initializer=initer)
out = tf.layers.conv1d(inputs=net, filters=1024, kernel_size=3, strides=1, padding='same',
activation=None, kernel_initializer=initer)
return out
def out_conv(layer, initer=tf.contrib.layers.xavier_initializer(seed=5)):
net = tf.nn.relu(layer)
out = tf.layers.conv1d(inputs=net, filters=1024, kernel_size=3, strides=1, padding='same',
activation=tf.nn.relu, kernel_initializer=initer)
return out
############################ TRAIN and TEST NETWORK LAYER ###############################
def get_trainable_variables():
trainable_variables_scope = [a.name for a in tf.trainable_variables()]
trainable_variables_list = tf.trainable_variables()
trainable_variables = []
for i in range(len(trainable_variables_scope)):
if ("base_feature_network" in trainable_variables_scope[i]) or \
("anchor_layer" in trainable_variables_scope[i]) or \
("predict_layer" in trainable_variables_scope[i]):
trainable_variables.append(trainable_variables_list[i])
return trainable_variables
def base_feature_network(X, mode=''):
# main network
initer = tf.contrib.layers.xavier_initializer(seed=5)
with tf.variable_scope("base_feature_network" + mode):
# ----------------------- Base layers ----------------------
# [batch_size, 128, 1024]
net = tf.layers.conv1d(inputs=X, filters=512, kernel_size=9, strides=1, padding='same',
activation=tf.nn.relu, kernel_initializer=initer)
# [batch_size, 128, 512]
net = tf.layers.max_pooling1d(inputs=net, pool_size=4, strides=2, padding='same')
# [batch_size, 64, 512]
net = tf.layers.conv1d(inputs=net, filters=512, kernel_size=9, strides=1, padding='same',
activation=tf.nn.relu, kernel_initializer=initer)
# [batch_size, 64, 512]
net = tf.layers.max_pooling1d(inputs=net, pool_size=4, strides=2, padding='same')
# [batch_size, 32, 512]
return net
def main_anchor_layer(net, mode=''):
# main network
initer = tf.contrib.layers.xavier_initializer(seed=5)
with tf.variable_scope("main_anchor_layer" + mode):
# ----------------------- Anchor layers ----------------------
MAL1 = tf.layers.conv1d(inputs=net, filters=1024, kernel_size=3, strides=2, padding='same',
activation=tf.nn.relu, kernel_initializer=initer)
# [batch_size, 16, 1024]
MAL2 = tf.layers.conv1d(inputs=MAL1, filters=1024, kernel_size=3, strides=2, padding='same',
activation=tf.nn.relu, kernel_initializer=initer)
# [batch_size, 8, 1024]
MAL3 = tf.layers.conv1d(inputs=MAL2, filters=1024, kernel_size=3, strides=2, padding='same',
activation=tf.nn.relu, kernel_initializer=initer)
# [batch_size, 4, 1024]
return MAL1, MAL2, MAL3
def branch_anchor_layer(MALs, name=''):
MAL1, MAL2, MAL3 = MALs
with tf.variable_scope("branch_anchor_layer" + name):
BAL3 = out_conv(in_conv(MAL3)) # [batch_size, 4, 1024]
BAL3_expd = tf.expand_dims(BAL3, 1) # [batch_size, 1, 4, 1024]
BAL3_de = tf.layers.conv2d_transpose(BAL3_expd, 1024, kernel_size=(1, 4),
strides=(1, 2), padding='same') # [batch_size, 1, 8, 1024]
BAL3_up = tf.reduce_sum(BAL3_de, [1]) # [batch_size, 8, 1024]
MAL2_in_conv = in_conv(MAL2)
BAL2 = out_conv((MAL2_in_conv * 2 + BAL3_up) / 3) # [batch_size, 8, 1024]
MAL2_expd = tf.expand_dims(BAL2, 1) # [batch_size, 1, 8, 1024]
MAL2_de = tf.layers.conv2d_transpose(MAL2_expd, 1024, kernel_size=(1, 4),
strides=(1, 2), padding='same') # [batch_size, 1, 16, 1024]
MAL2_up = tf.reduce_sum(MAL2_de, [1]) # [batch_size, 16, 1024]
MAL1_in_conv = in_conv(MAL1)
BAL1 = out_conv((MAL1_in_conv * 2 + MAL2_up) / 3) # [batch_size, 16, 1024]
return BAL1, BAL2, BAL3
# action or not + conf + location (center&width)
# Anchor Binary Classification and Regression
def biClsReg_predict_layer(config, layer, layer_name, specific_layer):
num_dbox = config.num_dbox[layer_name]
with tf.variable_scope("biClsReg_predict_layer" + layer_name + specific_layer):
anchor = tf.layers.conv1d(inputs=layer, filters=num_dbox * (1 + 3),
kernel_size=3, padding='same', kernel_initializer=
tf.contrib.layers.xavier_initializer(seed=5))
anchor = tf.reshape(anchor, [config.batch_size, -1, (1 + 3)])
return anchor
# action or not + class score + conf + location (center&width)
# Action Multi-Class Classification and Regression
def mulClsReg_predict_layer(config, layer, layer_name, specific_layer):
num_dbox = config.num_dbox[layer_name]
ncls = config.num_classes
with tf.variable_scope("mulClsReg_predict_layer" + layer_name + specific_layer):
anchor = tf.layers.conv1d(inputs=layer, filters=num_dbox * (ncls + 3),
kernel_size=3, padding='same', kernel_initializer=
tf.contrib.layers.xavier_initializer(seed=5))
anchor = tf.reshape(anchor, [config.batch_size, -1, (ncls + 3)])
return anchor
#################################### TRAIN LOSS #####################################
def loss_function(anchors_class, anchors_conf, anchors_xmin, anchors_xmax,
match_x, match_w, match_labels, match_scores, config):
match_xmin = match_x - match_w / 2
match_xmax = match_x + match_w / 2
pmask = tf.cast(match_scores > 0.5, dtype=tf.float32)
num_positive = tf.reduce_sum(pmask)
num_entries = tf.cast(tf.size(match_scores), dtype=tf.float32)
hmask = match_scores < 0.5
hmask = tf.logical_and(hmask, anchors_conf > 0.5)
hmask = tf.cast(hmask, dtype=tf.float32)
num_hard = tf.reduce_sum(hmask)
# the meaning of r_negative: the ratio of anchors need to choose from easy negative anchors
# If we have `num_positive` positive anchors in training data,
# then we only need `config.negative_ratio*num_positive` negative anchors
# r_negative=(number of easy negative anchors need to choose from all easy negative) / (number of easy negative)
# the meaning of easy negative: all-pos-hard_neg
r_negative = (config.negative_ratio - num_hard / num_positive) * num_positive / (
num_entries - num_positive - num_hard)
r_negative = tf.minimum(r_negative, 1)
nmask = tf.random_uniform(tf.shape(pmask), dtype=tf.float32)
nmask = nmask * (1. - pmask)
nmask = nmask * (1. - hmask)
nmask = tf.cast(nmask > (1. - r_negative), dtype=tf.float32)
# class_loss
weights = pmask + nmask + hmask
class_loss = tf.nn.softmax_cross_entropy_with_logits(logits=anchors_class, labels=match_labels)
class_loss = tf.losses.compute_weighted_loss(class_loss, weights)
# correct_pred = tf.equal(tf.argmax(anchors_class, 2), tf.argmax(match_labels, 2))
# accuracy = tf.reduce_mean(tf.cast(correct_pred, dtype=tf.float32))
# loc_loss
weights = pmask
loc_loss = abs_smooth(anchors_xmin - match_xmin) + abs_smooth(anchors_xmax - match_xmax)
loc_loss = tf.losses.compute_weighted_loss(loc_loss, weights)
# conf loss
weights = pmask + nmask + hmask
# match_scores is from jaccard_with_anchors
conf_loss = abs_smooth(match_scores - anchors_conf)
conf_loss = tf.losses.compute_weighted_loss(conf_loss, weights)
return class_loss, loc_loss, conf_loss
#################################### POST PROCESS #####################################
def min_max_norm(X):
# map [0,1] -> [0.5,0.73] (almost linearly) ([-1, 0] -> [0.26, 0.5])
return 1.0 / (1.0 + np.exp(-1.0 * X))
def post_process(df, config):
class_scores_class = [(df['score_' + str(i)]).values[:].tolist() for i in range(21)]
class_scores_seg = [[class_scores_class[j][i] for j in range(21)] for i in range(len(df))]
class_real = [0] + config.class_real # num_classes + 1
# save the top 2 or 3 score element
# append the largest score element
class_type_list = []
class_score_list = []
for i in range(len(df)):
class_score = np.array(class_scores_seg[i][1:]) * min_max_norm(df.conf.values[i])
class_score = class_score.tolist()
class_type = class_real[class_score.index(max(class_score)) + 1]
class_type_list.append(class_type)
class_score_list.append(max(class_score))
resultDf1 = pd.DataFrame()
resultDf1['out_type'] = class_type_list
resultDf1['out_score'] = class_score_list
resultDf1['start'] = df.xmin.values[:]
resultDf1['end'] = df.xmax.values[:]
# append the second largest score element
class_type_list = []
class_score_list = []
for i in range(len(df)):
class_score = np.array(class_scores_seg[i][1:]) * min_max_norm(df.conf.values[i])
class_score = class_score.tolist()
class_score[class_score.index(max(class_score))] = 0
class_type = class_real[class_score.index(max(class_score)) + 1]
class_type_list.append(class_type)
class_score_list.append(max(class_score))
resultDf2 = pd.DataFrame()
resultDf2['out_type'] = class_type_list
resultDf2['out_score'] = class_score_list
resultDf2['start'] = df.xmin.values[:]
resultDf2['end'] = df.xmax.values[:]
resultDf1 = pd.concat([resultDf1, resultDf2])
# # append the third largest score element (improve little and slow)
class_type_list = []
class_score_list = []
for i in range(len(df)):
class_score = np.array(class_scores_seg[i][1:]) * min_max_norm(df.conf.values[i])
class_score = class_score.tolist()
class_score[class_score.index(max(class_score))] = 0
class_score[class_score.index(max(class_score))] = 0
class_type = class_real[class_score.index(max(class_score)) + 1]
class_type_list.append(class_type)
class_score_list.append(max(class_score))
resultDf2 = pd.DataFrame()
resultDf2['out_type'] = class_type_list
resultDf2['out_score'] = class_score_list
resultDf2['start'] = df.xmin.values[:]
resultDf2['end'] = df.xmax.values[:]
resultDf1 = pd.concat([resultDf1, resultDf2])
# resultDf1=resultDf1[resultDf1.out_score>0.05]
resultDf1['video_name'] = [df['video_name'].values[0] for _ in range(len(resultDf1))]
return resultDf1
def temporal_nms(config, dfNMS, filename, videoname):
nms_threshold = config.nms_threshold
fo = open(filename, 'a')
typeSet = list(set(dfNMS.out_type.values[:]))
for t in typeSet:
tdf = dfNMS[dfNMS.out_type == t]
t1 = np.array(tdf.start.values[:])
t2 = np.array(tdf.end.values[:])
scores = np.array(tdf.out_score.values[:])
ttype = list(tdf.out_type.values[:])
durations = t2 - t1
order = scores.argsort()[::-1]
keep = []
while order.size > 0:
i = order[0]
keep.append(i)
tt1 = np.maximum(t1[i], t1[order[1:]])
tt2 = np.minimum(t2[i], t2[order[1:]])
intersection = tt2 - tt1
IoU = intersection / (durations[i] + durations[order[1:]] - intersection).astype(float)
inds = np.where(IoU <= nms_threshold)[0]
order = order[inds + 1]
for idx in keep:
# class_real: do not have class 0 (ambiguous) -> remove all ambiguous class
if ttype[idx] in config.class_real:
if videoname in ["video_test_0001255", "video_test_0001058",
"video_test_0001459", "video_test_0001195", "video_test_0000950"]: # 25fps
strout = "%s\t%.3f\t%.3f\t%d\t%.4f\n" % (videoname, float(t1[idx]) / 25,
float(t2[idx]) / 25, ttype[idx], scores[idx])
elif videoname == "video_test_0001207": # 24fps
strout = "%s\t%.3f\t%.3f\t%d\t%.4f\n" % (videoname, float(t1[idx]) / 24,
float(t2[idx]) / 24, ttype[idx], scores[idx])
else: # most videos are 30fps
strout = "%s\t%.3f\t%.3f\t%d\t%.4f\n" % (videoname, float(t1[idx]) / 30,
float(t2[idx]) / 30, ttype[idx], scores[idx])
fo.write(strout)
def fuse_two_stream(spatial_path, temporal_path):
temporal_df = pd.read_csv(temporal_path)
spatial_df = pd.read_csv(spatial_path)
out_df = temporal_df
out_df['conf'] = temporal_df.conf.values[:] * 2 / 3 + spatial_df.conf.values * 1 / 3
out_df['xmin'] = temporal_df.xmin.values[:] * 2 / 3 + spatial_df.xmin.values * 1 / 3
out_df['xmax'] = temporal_df.xmax.values[:] * 2 / 3 + spatial_df.xmax.values * 1 / 3
out_df['score_0'] = temporal_df.score_0.values[:] * 2 / 3 + spatial_df.score_0.values * 1 / 3
out_df['score_1'] = temporal_df.score_1.values[:] * 2 / 3 + spatial_df.score_1.values * 1 / 3
out_df['score_2'] = temporal_df.score_2.values[:] * 2 / 3 + spatial_df.score_2.values * 1 / 3
out_df['score_3'] = temporal_df.score_3.values[:] * 2 / 3 + spatial_df.score_3.values * 1 / 3
out_df['score_4'] = temporal_df.score_4.values[:] * 2 / 3 + spatial_df.score_4.values * 1 / 3
out_df['score_5'] = temporal_df.score_5.values[:] * 2 / 3 + spatial_df.score_5.values * 1 / 3
out_df['score_6'] = temporal_df.score_6.values[:] * 2 / 3 + spatial_df.score_6.values * 1 / 3
out_df['score_7'] = temporal_df.score_7.values[:] * 2 / 3 + spatial_df.score_7.values * 1 / 3
out_df['score_8'] = temporal_df.score_8.values[:] * 2 / 3 + spatial_df.score_8.values * 1 / 3
out_df['score_9'] = temporal_df.score_9.values[:] * 2 / 3 + spatial_df.score_9.values * 1 / 3
out_df['score_10'] = temporal_df.score_10.values[:] * 2 / 3 + spatial_df.score_10.values * 1 / 3
out_df['score_11'] = temporal_df.score_11.values[:] * 2 / 3 + spatial_df.score_11.values * 1 / 3
out_df['score_12'] = temporal_df.score_12.values[:] * 2 / 3 + spatial_df.score_12.values * 1 / 3
out_df['score_13'] = temporal_df.score_13.values[:] * 2 / 3 + spatial_df.score_13.values * 1 / 3
out_df['score_14'] = temporal_df.score_14.values[:] * 2 / 3 + spatial_df.score_14.values * 1 / 3
out_df['score_15'] = temporal_df.score_15.values[:] * 2 / 3 + spatial_df.score_15.values * 1 / 3
out_df['score_16'] = temporal_df.score_16.values[:] * 2 / 3 + spatial_df.score_16.values * 1 / 3
out_df['score_17'] = temporal_df.score_17.values[:] * 2 / 3 + spatial_df.score_17.values * 1 / 3
out_df['score_18'] = temporal_df.score_18.values[:] * 2 / 3 + spatial_df.score_18.values * 1 / 3
out_df['score_19'] = temporal_df.score_19.values[:] * 2 / 3 + spatial_df.score_19.values * 1 / 3
out_df['score_20'] = temporal_df.score_20.values[:] * 2 / 3 + spatial_df.score_20.values * 1 / 3
out_df = out_df[out_df.score_0 < 0.99]
# outDf.to_csv(fusePath, index=False)
return out_df
def result_process(batch_win_info, batch_result_class,
batch_result_conf, batch_result_xmin, batch_result_xmax, config, batch_idx):
out_df = pandas.DataFrame(columns=config.outdf_columns)
for j in range(config.batch_size):
tmp_df = pandas.DataFrame()
win_info = batch_win_info[batch_idx][j] # one sample in window_info.log
# the following four attributes are produced by the above one
# winInfo sample, 108 kinds of anchors are the
# combination of different layer types and scale ratios
result_class = batch_result_class[batch_idx][j]
result_xmin = batch_result_xmin[batch_idx][j]
result_xmax = batch_result_xmax[batch_idx][j]
result_conf = batch_result_conf[batch_idx][j]
num_box = len(result_class) # (16*5+8*5+4*5) = sum of num_anchors*num_dbox
video_name = win_info[1]
tmp_df['video_name'] = [video_name] * num_box
tmp_df['start'] = [int(win_info[0])] * num_box
tmp_df['conf'] = result_conf
tmp_df['xmin'] = result_xmin
tmp_df['xmax'] = result_xmax
tmp_df.xmin = numpy.maximum(tmp_df.xmin, 0)
tmp_df.xmax = numpy.minimum(tmp_df.xmax, config.window_size)
tmp_df.xmin = tmp_df.xmin + tmp_df.start
tmp_df.xmax = tmp_df.xmax + tmp_df.start
for cidx in range(config.num_classes):
tmp_df['score_' + str(cidx)] = result_class[:, cidx]
if not config.save_predict_result:
# filter len(tmpDf) from 108 to ~20~40~
tmp_df = tmp_df[tmp_df.score_0 < config.filter_neg_threshold]
out_df = pandas.concat([out_df, tmp_df])
return out_df
def final_result_process(stage, pretrain_dataset, config, mode, method, method_temporal='', df=None):
if stage == 'fuse':
if method_temporal == '':
method_temporal = method
spatial_file = join('results', 'predict_spatial_' + pretrain_dataset + '_' + method + '.csv')
temporal_file = join('results', 'predict_temporal_' + pretrain_dataset + '_' + method_temporal + '.csv')
if not os.path.isfile(spatial_file):
print ("Error: spatial_file", spatial_file, "not exists!")
exit()
if not os.path.isfile(temporal_file):
print ("Error: temporal_file", temporal_file, "not exists!")
exit()
df = fuse_two_stream(spatial_file, temporal_file)
if method != method_temporal:
method = method + '4sp_' + method_temporal + '4temp'
result_file = join('results', 'result_fuse_' + pretrain_dataset + '_' + method + '.txt')
else:
result_file = join('results', 'result_' + mode + '_' + pretrain_dataset + '_' + method + '.txt')
# necessary, otherwise the new content will append to the old
if os.path.isfile(result_file):
os.remove(result_file)
df = df[df.score_0 < config.filter_neg_threshold]
# it seems that without the following line,
# the performance would be a little better
df = df[df.conf > config.filter_conf_threshold]
video_name_list = list(set(df.video_name.values[:]))
# print "len(video_name_list):", len(video_name_list) # 210
for video_name in video_name_list:
tmpdf = df[df.video_name == video_name]
tmpdf = post_process(tmpdf, config)
# assign cliffDiving class as diving class too
cliff_diving_df = tmpdf[tmpdf.out_type == 22]
diving_df = cliff_diving_df
diving_df.loc[:, 'out_type'] = 26
tmpdf = pd.concat([tmpdf, diving_df])
temporal_nms(config, tmpdf, result_file, video_name)