-
Notifications
You must be signed in to change notification settings - Fork 31
/
Copy pathrnnt_np.py
187 lines (154 loc) · 6.73 KB
/
rnnt_np.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import mxnet as mx
import numpy as np
def forward_pass(log_probs, labels, blank):
T, U, _ = log_probs.shape
alphas = np.zeros((T, U))
for t in range(1, T):
alphas[t, 0] = alphas[t-1, 0] + log_probs[t-1, 0, blank]
for u in range(1, U):
alphas[0, u] = alphas[0, u-1] + log_probs[0, u-1, labels[u-1]]
for t in range(1, T):
for u in range(1, U):
no_emit = alphas[t-1, u] + log_probs[t-1, u, blank]
emit = alphas[t, u-1] + log_probs[t, u-1, labels[u-1]]
alphas[t, u] = np.logaddexp(emit, no_emit)
loglike = alphas[T-1, U-1] + log_probs[T-1, U-1, blank]
return alphas, loglike
def backward_pass(log_probs, labels, blank):
T, U, _ = log_probs.shape
betas = np.zeros((T, U))
betas[T-1, U-1] = log_probs[T-1, U-1, blank]
for t in reversed(range(T-1)):
betas[t, U-1] = betas[t+1, U-1] + log_probs[t, U-1, blank]
for u in reversed(range(U-1)):
betas[T-1, u] = betas[T-1, u+1] + log_probs[T-1, u, labels[u]]
for t in reversed(range(T-1)):
for u in reversed(range(U-1)):
no_emit = betas[t+1, u] + log_probs[t, u, blank]
emit = betas[t, u+1] + log_probs[t, u, labels[u]]
betas[t, u] = np.logaddexp(emit, no_emit)
return betas, betas[0, 0]
def compute_gradient(log_probs, alphas, betas, labels, blank):
T, U, _ = log_probs.shape
grads = np.full(log_probs.shape, -float("inf"))
log_like = betas[0, 0]
grads[T-1, U-1, blank] = alphas[T-1, U-1]
grads[:T-1, :, blank] = alphas[:T-1, :] + betas[1:, :]
for u, l in enumerate(labels):
grads[:, u, l] = alphas[:, u] + betas[:, u+1]
grads = -np.exp(grads + log_probs - log_like)
return grads
def transduce(log_probs, labels, blank=0):
"""
Args:
log_probs: 3D array with shape
[input len, output len + 1, vocab size]
labels: 1D array with shape [output time steps]
Returns:
float: The negative log-likelihood
3D array: Gradients with respect to the
unnormalized input actications
"""
alphas, ll_forward = forward_pass(log_probs, labels, blank)
betas, ll_backward = backward_pass(log_probs, labels, blank)
grads = compute_gradient(log_probs, alphas, betas, labels, blank)
return -ll_forward, grads
def transduce_batch(log_probs, labels, flen, glen, blank=0):
grads = np.zeros_like(log_probs)
costs = []
# TODO parallel loop
for b in range(log_probs.shape[0]):
t = int(flen[b])
u = int(glen[b]) + 1
ll, g = transduce(log_probs[b, :t, :u, :], labels[b, :u-1], blank)
grads[b, :t, :u, :] = g
costs.append(ll)
return costs, grads
class RNNTransducer(mx.operator.CustomOp):
"""The implementation of RNN Transducer loss functions.
To make it usable for real-world cases, this class has two policies below.
1. This class computes forward and backward variables in the log domain.
2. This class do not apply the softmax function to inputs, since the gradient calculation will be easily overflow.
"""
def __init__(self, blank):
self.blank = blank
def forward(self, is_train, req, in_data, out_data, aux):
'''
`log_ytu`: am & pm joint probability, layout 'BTUV'
`y`: label sequence (blank, y1, ..., yU), layout 'BU'
`flen`: acoustic model outputs sequence true length <= T
`glen`: label sequence length <= U
'''
log_ytu, y, flen, glen = in_data
loss, grad = transduce_batch(log_ytu.asnumpy(), y.asnumpy().astype(np.int32), flen.asnumpy(), glen.asnumpy(), self.blank)
self.saved_tensors = mx.nd.array(grad, ctx=log_ytu.context),
self.assign(out_data[0], req[0], mx.nd.array(loss, ctx=log_ytu.context))
def backward(self, req, out_grad, in_data, out_data, in_grad, aux):
grad, = self.saved_tensors
self.assign(in_grad[0], req[0], grad)
@mx.operator.register('Transducer')
class RNNTransducerProp(mx.operator.CustomOpProp):
def __init__(self, blank=0):
super(RNNTransducerProp, self).__init__()
self.blank = int(blank)
def list_arguments(self):
return ['log_ytu', 'label', 'flen', 'glen']
def list_outputs(self):
return ['output']
def infer_shape(self, in_shapes):
return in_shapes, ((in_shapes[1][0],),), ()
def create_operator(self, ctx, shapes, dtypes):
return RNNTransducer(self.blank)
class RNNTLoss(mx.gluon.loss.Loss):
def __init__(self, blank=0, weight=None, **kwargs):
batch_axis = 0
self.blank = blank
super(RNNTLoss, self).__init__(weight, batch_axis, **kwargs)
def hybrid_forward(self, F, log_ytu, label, flen, glen):
loss = F.Custom(log_ytu, label, flen, glen, blank=self.blank, op_type='Transducer')
return loss
if __name__ == '__main__':
T = 400; U = 300; B = 8; V = 50
ctx = mx.cpu()
def joint_test():
log_ytu = mx.nd.log_softmax(mx.nd.random_uniform(-10, 10, shape=(B, T, U+1, V), ctx=ctx, dtype=np.float32), axis=3)
y = mx.nd.random_uniform(1, V, shape=(B, U), ctx=ctx).astype('i')
flen = mx.nd.full(B, T, ctx=ctx, dtype='i')
glen = mx.nd.full(B, U, ctx=ctx, dtype='i')
log_ytu.attach_grad()
with mx.autograd.record():
loss = mx.nd.Custom(log_ytu, y, flen, glen, op_type='Transducer')
loss.backward()
print(log_ytu.grad)
print(loss)
def seperate_test():
f = mx.nd.random_uniform(-10, 10, shape=(B, T, V), ctx=ctx, dtype=np.float32)
g = mx.nd.random_uniform(-10, 10, shape=(B, U+1, V), ctx=ctx, dtype=np.float32)
y = mx.nd.random_uniform(1, V, shape=(B, U), ctx=ctx).astype('i')
flen = mx.nd.full(B, T, ctx=ctx, dtype='i')
glen = mx.nd.full(B, U, ctx=ctx, dtype='i')
f.attach_grad()
g.attach_grad()
with mx.autograd.record():
f1 = mx.nd.expand_dims(f, axis=2)
g1 = mx.nd.expand_dims(g, axis=1)
log_ytu = mx.nd.log_softmax(f1 + g1, axis=3)
loss = mx.nd.Custom(log_ytu, y, flen, glen, op_type='Transducer', blank=0)
loss.backward()
print(f.grad)
print(g.grad)
print(loss)
def loss_test():
log_ytu = mx.nd.log_softmax(mx.nd.random_uniform(-10, 10, shape=(B, T, U+1, V), ctx=ctx, dtype=np.float32), axis=3)
y = mx.nd.random_uniform(1, V, shape=(B, U), ctx=ctx).astype('i')
flen = mx.nd.full(B, T, ctx=ctx, dtype='i')
glen = mx.nd.full(B, U, ctx=ctx, dtype='i')
log_ytu.attach_grad()
criterion = RNNTLoss()
with mx.autograd.record():
loss = criterion(log_ytu, y, flen, glen)
loss.backward()
print(log_ytu.grad)
print(loss)
# seperate_test()
loss_test()