forked from axinc-ai/ailia-models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
clap.py
178 lines (150 loc) · 5.88 KB
/
clap.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import time
import sys
import numpy as np
import ailia # noqa: E402
sys.path.append('../../util')
from utils import get_base_parser, update_parser # noqa: E402
from model_utils import check_and_download_models # noqa: E402
# logger
from logging import getLogger # noqa: E402
logger = getLogger(__name__)
# for clap
import librosa
from transformers import RobertaTokenizer, RobertaModel
from clap_utils import *
# ======================
# Arguemnt Parser Config
# ======================
AUDIO_PATH = 'input.wav'
parser = get_base_parser('CLAP', AUDIO_PATH, None)
parser.add_argument(
'--onnx',
action='store_true',
help='By default, the ailia SDK is used, but with this option, you can switch to using ONNX Runtime'
)
args = update_parser(parser)
# ======================
# PARAMETERS
# ======================
CLAP_AUDIO_WEIGHT_PATH = "CLAP_audio_LAION-Audio-630K_with_fusion.onnx"
CLAP_AUDIO_MODEL_PATH = "CLAP_audio_LAION-Audio-630K_with_fusion.onnx.prototxt"
CLAP_TEXT_ROBERTAMODEL_WEIGHT_PATH = "CLAP_text_text_branch_RobertaModel_roberta-base.onnx"
CLAP_TEXT_ROBERTAMODEL_MODEL_PATH = "CLAP_text_text_branch_RobertaModel_roberta-base.onnx.prototxt"
CLAP_TEXT_PROJECTION_WEIGHT_PATH = "CLAP_text_projection_LAION-Audio-630K_with_fusion.onnx"
CLAP_TEXT_PROJECTION_MODEL_PATH = "CLAP_text_projection_LAION-Audio-630K_with_fusion.onnx.prototxt"
REMOTE_PATH = "https://storage.googleapis.com/ailia-models/clap/"
# ======================
# Utils
# ======================
def cos_sim(v1, v2):
return np.dot(v1, v2) / (np.linalg.norm(v1) * np.linalg.norm(v2))
# ======================
# Main function
# ======================
def infer_text(net_text_branch, net_text_projection, text_data):
# tokenizer
tokenize = RobertaTokenizer.from_pretrained('roberta-base')
result = tokenize(
text_data,
padding="max_length",
truncation=True,
max_length=77,
return_tensors="pt",
)
data = {k: v.squeeze(0) for k, v in result.items()}
data["input_ids"] = data["input_ids"].to('cpu').detach().numpy().copy()
data["attention_mask"] = data["attention_mask"].to('cpu').detach().numpy().copy()
# predict
input_data = {
'input_ids': data["input_ids"],
'attention_mask': data["attention_mask"]
}
if not args.onnx:
output = net_text_branch.predict(input_data) # text_branch
_, x = output[0], output[1] # last_hidden_state, pooler_output
text_embeds = net_text_projection.predict(x) # projection
else:
output = net_text_branch.run(None, input_data) # text_branch
_, x = output[0], output[1] # last_hidden_state, pooler_output
text_embeds = net_text_projection.run(None, {'x': x})[0] # projection
return text_embeds
def infer_audio(net_audio, audio_src):
# load the waveform of the shape (T,), should resample to 48000
audio_waveform, sr = librosa.load(audio_src, sr=48000)
# quantize
audio_waveform = int16_to_float32(float32_to_int16(audio_waveform))
# get audio features
_, mel_fusion, _ = get_audio_features(
{}, audio_waveform, 480000,
data_truncating='fusion',
data_filling='repeatpad',
audio_cfg={
'audio_length': 1024,
'clip_samples': 480000,
'mel_bins': 64,
'sample_rate': 48000,
'window_size': 1024,
'hop_size': 480,
'fmin': 50,
'fmax': 14000,
'class_num': 527,
'model_type': 'HTSAT',
'model_name': 'tiny'
}
)
input_dict = {
'longer': [[True]], # Error occers when longer value is "False".
'mel_fusion': mel_fusion[np.newaxis, :, :, :]
}
# predict
if not args.onnx:
input_dict["longer"] = np.array(input_dict["longer"])
audio_embed = net_audio.predict(input_dict)[0]
else:
audio_embed = net_audio.run(None, input_dict)[0]
return audio_embed
def main():
# model files check and download
check_and_download_models(CLAP_AUDIO_WEIGHT_PATH, CLAP_AUDIO_MODEL_PATH, REMOTE_PATH)
check_and_download_models(CLAP_TEXT_PROJECTION_WEIGHT_PATH, CLAP_TEXT_PROJECTION_MODEL_PATH, REMOTE_PATH)
check_and_download_models(CLAP_TEXT_ROBERTAMODEL_WEIGHT_PATH, CLAP_TEXT_ROBERTAMODEL_MODEL_PATH, REMOTE_PATH)
# net initialize
if not args.onnx:
net_text_branch = \
ailia.Net(CLAP_TEXT_ROBERTAMODEL_MODEL_PATH, CLAP_TEXT_ROBERTAMODEL_WEIGHT_PATH, env_id=args.env_id)
net_text_projection = \
ailia.Net(CLAP_TEXT_PROJECTION_MODEL_PATH, CLAP_TEXT_PROJECTION_WEIGHT_PATH, env_id=args.env_id)
net_audio = \
ailia.Net(CLAP_AUDIO_MODEL_PATH, CLAP_AUDIO_WEIGHT_PATH, env_id=args.env_id)
else:
import onnxruntime
net_text_branch = \
onnxruntime.InferenceSession(CLAP_TEXT_ROBERTAMODEL_WEIGHT_PATH)
net_text_projection = \
onnxruntime.InferenceSession(CLAP_TEXT_PROJECTION_WEIGHT_PATH)
net_audio = \
onnxruntime.InferenceSession(CLAP_AUDIO_WEIGHT_PATH)
# text predict
text_inputs = [
"applause applaud clap",
"The crowd is clapping.",
"I love the contrastive learning",
"bell",
"soccer",
"open the door.",
"applause",
"dog",
"dog barking"
]
text_embedding = infer_text(net_text_branch, net_text_projection, text_inputs)
# audio predict
for audio_path in args.input:
audio_embedding = infer_audio(net_audio, audio_path)
# show result
print('===== cosine similality between text and audio =====')
print('audio: {}'.format(audio_path))
for i in range(text_embedding.shape[0]):
print('cossim={:.04f}, word={}'.format(cos_sim(text_embedding[i], audio_embedding[0]), text_inputs[i]))
logger.info('Script finished successfully.')
if __name__ == "__main__":
main()