(Image from http://188.138.127.15:81/Datasets/Market-1501-v15.09.15.zip)
Shape : (batch, 3, height, width)
Automatically downloads the onnx and prototxt files on the first run. It is necessary to be connected to the Internet while downloading.
For the sample image,
$ python3 person_reid_baseline_pytorch.py
If you want to specify the input image, put the image path after the --input
option.
You can use --savepath
option to change the name of the output file to save.
$ python3 person_reid_baseline_pytorch.py --input IMAGE_PATH --savepath SAVE_IMAGE_PATH
If you want to specify the directory of gallery image, put the directory path after the --gallery_dir
option.
$ python3 person_reid_baseline_pytorch.py --gallery_dir gallery
Now, files in this gallery directory are very restricted.
Many more files can be found in the bounding_box_test directory of Market-1501-v15.09.15.zip.
Once the program run, a intermediate result file containing the features of the gallery image will be created.
By adding the intermediate result file name after the --data
option, you can use the intermediate result of the previous inference.
$ python3 person_reid_baseline_pytorch.py --data result_resnet50.npy
By adding the model name after the --model
option, you can specify the model.
The model name is selected from 'resnet50', 'fp16', 'dense', 'pcb'.
$ python3 person_reid_baseline_pytorch.py --model resnet50
Pytorch
ONNX opset=11
ft_ResNet50.onnx.prototxt fp16.onnx.prototxt ft_net_dense.onnx.prototxt PCB.onnx.prototxt