Automatically downloads the onnx and prototxt files on the first run. It is necessary to be connected to the Internet while downloading.
For the sample image,
$ python3 e2pose.py
If you want to specify the input image, put the image path after the --input
option.
You can use --savepath
option to change the name of the output file to save.
$ python3 e2pose.py --input IMAGE_PATH --savepath SAVE_IMAGE_PATH
By adding the --video
option, you can input the video.
If you pass 0
as an argument to VIDEO_PATH, you can use the webcam input instead of the video file.
$ python3 e2pose.py --video VIDEO_PATH
By adding the --model_type
option, you can specify model type which is selected from "resnet50", "resnet101", "resnet152", "mobilenet_320", "mobilenet_448". (default is resnet101)
$ python3 e2pose.py --model_type resnet101
Tensorflow
ONNX opset=11
COCO_ResNet50_320x320.onnx.prototxt
COCO_ResNet101_512x512.onnx.prototxt
COCO_ResNet152_448x448.onnx.prototxt
COCO_MobileNetV2_320x320.onnx.prototxt
COCO_MobileNetV2_448x512.onnx.prototxt