forked from axinc-ai/ailia-models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
lightweight-human-pose-estimation-analyze.py
executable file
·170 lines (140 loc) · 4.79 KB
/
lightweight-human-pose-estimation-analyze.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import sys
import time
import ailia
import cv2
import matplotlib.pyplot as plt
import numpy as np
sys.path.append('../../util')
# logger
from logging import getLogger # noqa: E402
from image_utils import imread, load_image # noqa: E402
from model_utils import check_and_download_models # noqa: E402
from utils import get_base_parser, get_savepath, update_parser # noqa: E402
logger = getLogger(__name__)
# ======================
# Parameters 1
# ======================
IMAGE_PATH = 'balloon.png'
SAVE_IMAGE_PATH = 'output.png'
IMAGE_HEIGHT = 240
IMAGE_WIDTH = 320
ALGORITHM = ailia.POSE_ALGORITHM_LW_HUMAN_POSE
# ======================
# Arguemnt Parser Config
# ======================
parser = get_base_parser(
'Fast and accurate human pose 2D-estimation.', IMAGE_PATH, SAVE_IMAGE_PATH,
)
parser.add_argument(
'-n', '--normal',
action='store_true',
help='By default, the optimized model is used, but with this option, ' +
'you can switch to the normal (not optimized) model'
)
args = update_parser(parser)
# ======================
# Parameters 2
# ======================
MODEL_NAME = 'lightweight-human-pose-estimation'
if args.normal:
WEIGHT_PATH = f'{MODEL_NAME}.onnx'
MODEL_PATH = f'{MODEL_NAME}.onnx.prototxt'
else:
WEIGHT_PATH = f'{MODEL_NAME}.opt.onnx'
MODEL_PATH = f'{MODEL_NAME}.opt.onnx.prototxt'
REMOTE_PATH = f'https://storage.googleapis.com/ailia-models/{MODEL_NAME}/'
# ======================
# Utils
# ======================
def plot_images(title, images, tile_shape):
assert images.shape[0] <= (tile_shape[0] * tile_shape[1])
from mpl_toolkits.axes_grid1 import ImageGrid
fig = plt.figure()
plt.title(title)
grid = ImageGrid(fig, 111, nrows_ncols=tile_shape)
for i in range(images.shape[1]):
grd = grid[i]
grd.imshow(images[0, i])
# ======================
# Main functions
# ======================
def main():
# model files check and download
check_and_download_models(WEIGHT_PATH, MODEL_PATH, REMOTE_PATH)
# net initialize
net = ailia.Net(MODEL_PATH, WEIGHT_PATH, env_id=args.env_id)
# input image loop
for image_path in args.input:
# prepare input data
logger.info(image_path)
src_img = imread(image_path)
input_image = load_image(
image_path,
(IMAGE_HEIGHT, IMAGE_WIDTH),
normalize_type='None',
)
input_data = (input_image - 128) / 255.0
input_data = input_data[np.newaxis, :, :, :].transpose((0, 3, 1, 2))
for i in range(3):
if(i == 1):
net.set_profile_mode()
start = int(round(time.time() * 1000))
_ = net.predict(input_data)
end = int(round(time.time() * 1000))
logger.info(f'ailia processing time {end - start} ms')
confidence = net.get_blob_data(net.find_blob_index_by_name("397"))
paf = net.get_blob_data(net.find_blob_index_by_name("400"))
points = []
threshold = 0.1
for i in range(confidence.shape[1]):
probMap = confidence[0, i, :, :]
minVal, prob, minLoc, point = cv2.minMaxLoc(probMap)
x = (src_img.shape[1] * point[0]) / confidence.shape[3]
y = (src_img.shape[0] * point[1]) / confidence.shape[2]
if prob > threshold:
circle_size = 4
cv2.circle(src_img, (int(x), int(y)), circle_size,
(0, 255, 255), thickness=-1, lineType=cv2.FILLED)
cv2.putText(
src_img,
"{}".format(i),
(int(x), int(y)),
cv2.FONT_HERSHEY_SIMPLEX,
1.0,
(0, 0, 255),
1,
lineType=cv2.LINE_AA
)
cv2.putText(
src_img,
""+str(prob),
(int(x), int(y+circle_size)),
cv2.FONT_HERSHEY_SIMPLEX,
0.5,
(0, 0, 255),
1,
lineType=cv2.LINE_AA
)
points.append((int(x), int(y)))
else:
points.append(None)
cv2.imshow("Keypoints", src_img)
savepath = get_savepath(args.savepath, image_path)
logger.info(f'saved at : {savepath}')
cv2.imwrite(savepath, src_img)
channels = max(confidence.shape[1], paf.shape[1])
cols = 8
plot_images(
"paf",
paf,
tile_shape=((int)((channels+cols-1)/cols), cols),
)
plot_images(
"confidence",
confidence,
tile_shape=((int)((channels+cols-1)/cols), cols),
)
plt.show()
cv2.destroyAllWindows()
if __name__ == '__main__':
main()