-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
67 lines (55 loc) · 1.77 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import nltk
nltk.download('punkt')
nltk.download('wordnet')
import numpy as np
import tflearn
import tensorflow as tf
import random
import json
from nltk.stem import WordNetLemmatizer
import pickle
from tensorflow.keras.models import load_model
lemmatizer=WordNetLemmatizer()
intents = json.loads(open('intents.json').read())
words=pickle.load(open('words.pkl','rb'))
classes=pickle.load(open('classes.pkl','rb'))
model = load_model('Chat_bot.h5')
def clean_up_sen(sentences):
sentence_words=nltk.word_tokenize(sentences)
sentence_words=[lemmatizer.lemmatize(word) for word in sentence_words]
return sentence_words
def bag_of_words(sentences):
sentences_words=clean_up_sen(sentences)
bag=[0] * len(words)
for w in sentences_words:
for i,word in enumerate(words):
if word == w :
bag[i]=1
return np.array(bag)
def predict_class(sentences):
bag=bag_of_words(sentences)
res=model.predict(np.array([bag]))[0]
ERROR_THRESHOLD=0.25
result = [[i,r] for i ,r in enumerate(res) if r> ERROR_THRESHOLD ]
result.sort(key=lambda x:x[1],reverse=True )
return_list=[]
for r in result:
return_list.append({'intent':classes[r[0]], 'probability': str(r[1])})
return return_list
def get_response(intents_list , intents_json):
tag=intents_list[0]['intent']
list_of_intents = intents_json['intents']
for i in list_of_intents:
if i['tag'] == tag :
result=random.choice(i['responses'])
break
return result
print("GO!")
print("Enter xxx to end")
while True:
message=input("ENTER:")
if(message=='xxx'):
exit()
ints = predict_class(message)
res = get_response(ints,intents)
print(res)