写一个函数,输入 n
,求斐波那契(Fibonacci)数列的第 n
项。斐波那契数列的定义如下:
F(0) = 0, F(1) = 1
F(N) = F(N - 1) + F(N - 2), 其中 N > 1.
斐波那契数列由 0 和 1 开始,之后的斐波那契数就是由之前的两数相加而得出。
答案需要取模 1e9+7(1000000007),如计算初始结果为:1000000008,请返回 1。
示例 1:
输入:n = 2
输出:1
示例 2:
输入:n = 5
输出:5
提示:
0 <= n <= 100
递推求解。
class Solution:
def fib(self, n: int) -> int:
a, b = 0, 1
for _ in range(n):
a, b = b, a + b
return a % 1000000007
class Solution {
public int fib(int n) {
int a = 0, b = 1;
for (int i = 0; i < n; ++i) {
int c = (a + b) % 1000000007;
a = b;
b = c;
}
return a;
}
}
class Solution {
public:
int fib(int n) {
int a = 0, b = 1;
for (int i = 0; i < n; ++i) {
int c = (a + b) % 1000000007;
a = b;
b = c;
}
return a;
}
};
/**
* @param {number} n
* @return {number}
*/
var fib = function (n) {
let a = 0,
b = 1;
for (let i = 0; i < n; ++i) {
const c = (a + b) % (1e9 + 7);
a = b;
b = c;
}
return a;
};
func fib(n int) int {
a, b := 0, 1
for i := 0; i < n; i++ {
a, b = b, (a + b) % 1000000007
}
return a
}
function fib(n: number): number {
let a: number = 0, b: number = 1;
for (let i: number = 0; i < n; i++) {
let c: number = (a + b) % 1000000007;
[a, b] = [b, c];
}
return a;
};
impl Solution {
pub fn fib(n: i32) -> i32 {
let mut tup = (0, 1);
for _ in 0..n {
tup = (tup.1, (tup.0 + tup.1) % 1000000007);
}
return tup.0;
}
}