编写一个高效的算法来搜索 m x n
矩阵 matrix
中的一个目标值 target
。该矩阵具有以下特性:
- 每行的元素从左到右升序排列。
- 每列的元素从上到下升序排列。
示例 1:
输入:matrix = [[1,4,7,11,15],[2,5,8,12,19],[3,6,9,16,22],[10,13,14,17,24],[18,21,23,26,30]], target = 5 输出:true
示例 2:
输入:matrix = [[1,4,7,11,15],[2,5,8,12,19],[3,6,9,16,22],[10,13,14,17,24],[18,21,23,26,30]], target = 20 输出:false
提示:
m == matrix.length
n == matrix[i].length
1 <= n, m <= 300
-109 <= matix[i][j] <= 109
- 每行的所有元素从左到右升序排列
- 每列的所有元素从上到下升序排列
-109 <= target <= 109
从左下角(或右上角)开始查找即可。
class Solution:
def searchMatrix(self, matrix: List[List[int]], target: int) -> bool:
m, n = len(matrix), len(matrix[0])
i, j = m - 1, 0
while i >= 0 and j < n:
if matrix[i][j] == target:
return True
if matrix[i][j] > target:
i -= 1
else:
j += 1
return False
class Solution {
public boolean searchMatrix(int[][] matrix, int target) {
int m = matrix.length, n = matrix[0].length;
int i = m - 1, j = 0;
while (i >= 0 && j < n) {
if (matrix[i][j] == target) {
return true;
}
if (matrix[i][j] > target) {
--i;
} else {
++j;
}
}
return false;
}
}
function searchMatrix(matrix: number[][], target: number): boolean {
let m = matrix.length, n = matrix[0].length;
let i = m - 1, j = 0;
while (i >= 0 && j < n) {
let cur = matrix[i][j];
if (cur == target) return true;
if (cur > target) {
--i;
} else {
++j;
}
}
return false;
};
class Solution {
public:
bool searchMatrix(vector<vector<int>>& matrix, int target) {
int m = matrix.size(), n = matrix[0].size();
int i = m - 1, j = 0;
while (i >= 0 && j < n)
{
if (matrix[i][j] == target) return true;
if (matrix[i][j] > target) --i;
else ++j;
}
return false;
}
};
func searchMatrix(matrix [][]int, target int) bool {
m, n := len(matrix), len(matrix[0])
i, j := m-1, 0
for i >= 0 && j < n {
if matrix[i][j] == target {
return true
}
if matrix[i][j] > target {
i--
} else {
j++
}
}
return false
}
public class Solution {
public bool SearchMatrix(int[][] matrix, int target) {
int m = matrix.Length, n = matrix[0].Length;
int i = m - 1, j = 0;
while (i >= 0 && j < n)
{
if (matrix[i][j] == target)
{
return true;
}
if (matrix[i][j] > target)
{
--i;
}
else
{
++j;
}
}
return false;
}
}