You are given an array of positive integers w
where w[i]
describes the weight of i
th
index (0-indexed).
We need to call the function pickIndex()
which randomly returns an integer in the range [0, w.length - 1]
. pickIndex()
should return the integer proportional to its weight in the w
array. For example, for w = [1, 3]
, the probability of picking the index 0
is 1 / (1 + 3) = 0.25
(i.e 25%) while the probability of picking the index 1
is 3 / (1 + 3) = 0.75
(i.e 75%).
More formally, the probability of picking index i
is w[i] / sum(w)
.
Example 1:
Input ["Solution","pickIndex"] [[[1]],[]] Output [null,0] Explanation Solution solution = new Solution([1]); solution.pickIndex(); // return 0. Since there is only one single element on the array the only option is to return the first element.
Example 2:
Input ["Solution","pickIndex","pickIndex","pickIndex","pickIndex","pickIndex"] [[[1,3]],[],[],[],[],[]] Output [null,1,1,1,1,0] Explanation Solution solution = new Solution([1, 3]); solution.pickIndex(); // return 1. It's returning the second element (index = 1) that has probability of 3/4. solution.pickIndex(); // return 1 solution.pickIndex(); // return 1 solution.pickIndex(); // return 1 solution.pickIndex(); // return 0. It's returning the first element (index = 0) that has probability of 1/4. Since this is a randomization problem, multiple answers are allowed so the following outputs can be considered correct : [null,1,1,1,1,0] [null,1,1,1,1,1] [null,1,1,1,0,0] [null,1,1,1,0,1] [null,1,0,1,0,0] ...... and so on.
Constraints:
1 <= w.length <= 10000
1 <= w[i] <= 10^5
pickIndex
will be called at most10000
times.
class Solution:
def __init__(self, w: List[int]):
n = len(w)
self.presum = [0] * (n + 1)
for i in range(n):
self.presum[i + 1] = self.presum[i] + w[i]
def pickIndex(self) -> int:
n = len(self.presum)
x = random.randint(1, self.presum[-1])
left, right = 0, n - 2
while left < right:
mid = (left + right) >> 1
if self.presum[mid + 1] >= x:
right = mid
else:
left = mid + 1
return left
# Your Solution object will be instantiated and called as such:
# obj = Solution(w)
# param_1 = obj.pickIndex()
class Solution {
private int[] presum;
public Solution(int[] w) {
int n = w.length;
presum = new int[n + 1];
for (int i = 0; i < n; ++i) {
presum[i + 1] = presum[i] + w[i];
}
}
public int pickIndex() {
int n = presum.length;
int x = (int) (Math.random() * presum[n - 1]) + 1;
int left = 0, right = n - 2;
while (left < right) {
int mid = (left + right) >> 1;
if (presum[mid + 1] >= x) {
right = mid;
} else {
left = mid + 1;
}
}
return left;
}
}
/**
* Your Solution object will be instantiated and called as such:
* Solution obj = new Solution(w);
* int param_1 = obj.pickIndex();
*/
class Solution {
public:
vector<int> presum;
Solution(vector<int>& w) {
int n = w.size();
presum.resize(n + 1);
for (int i = 0; i < n; ++i) presum[i + 1] = presum[i] + w[i];
}
int pickIndex() {
int n = presum.size();
int x = rand() % presum[n - 1] + 1;
int left = 0, right = n - 2;
while (left < right)
{
int mid = left + right >> 1;
if (presum[mid + 1] >= x) right = mid;
else left = mid + 1;
}
return left;
}
};
/**
* Your Solution object will be instantiated and called as such:
* Solution* obj = new Solution(w);
* int param_1 = obj->pickIndex();
*/
type Solution struct {
presum []int
}
func Constructor(w []int) Solution {
n := len(w)
pre := make([]int, n+1)
for i := 0; i < n; i++ {
pre[i+1] = pre[i] + w[i]
}
return Solution{pre}
}
func (this *Solution) PickIndex() int {
n := len(this.presum)
x := rand.Intn(this.presum[n-1]) + 1
left, right := 0, n-2
for left < right {
mid := (left + right) >> 1
if this.presum[mid+1] >= x {
right = mid
} else {
left = mid + 1
}
}
return left
}
/**
* Your Solution object will be instantiated and called as such:
* obj := Constructor(w);
* param_1 := obj.PickIndex();
*/