Skip to content

Latest commit

 

History

History
77 lines (56 loc) · 1.81 KB

File metadata and controls

77 lines (56 loc) · 1.81 KB

中文文档

Description

Given a square grid of integers arr, a falling path with non-zero shifts is a choice of exactly one element from each row of arr, such that no two elements chosen in adjacent rows are in the same column.

Return the minimum sum of a falling path with non-zero shifts.

 

Example 1:

Input: arr = [[1,2,3],[4,5,6],[7,8,9]]
Output: 13
Explanation: 
The possible falling paths are:
[1,5,9], [1,5,7], [1,6,7], [1,6,8],
[2,4,8], [2,4,9], [2,6,7], [2,6,8],
[3,4,8], [3,4,9], [3,5,7], [3,5,9]
The falling path with the smallest sum is [1,5,7], so the answer is 13.

 

Constraints:

  • 1 <= arr.length == arr[i].length <= 200
  • -99 <= arr[i][j] <= 99

Solutions

Python3

Java

class Solution {
    public void rotate(int[] nums, int k) {
        int[] res = new int[nums.length];
        int leftInit = 0;
        if (nums.length < k) {
            k = k % nums.length;
        }
        for (int i = nums.length - k; i < nums.length; i++) {
            res[leftInit] = nums[i];
            leftInit++;
        }
        int rightInit = 0;
        for (int i = k; i < nums.length; i++) {
            res[i] = nums[rightInit];
            rightInit++;
        }
        for (int i = 0; i < nums.length; i++) {
            nums[i] = res[i];
        }

    }
}

...