forked from igv/FSRCNN-TensorFlow
-
Notifications
You must be signed in to change notification settings - Fork 0
/
LapSRN.py
57 lines (46 loc) · 2.46 KB
/
LapSRN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import tensorflow as tf
import math
from utils import bilinear_upsample_weights, bicubic_downsample
class Model(object):
def __init__(self, config):
self.name = "LapSRN"
self.model_params = [32, 2, 2] #f, d, r in paper
self.scale = config.scale
self.radius = config.radius
self.padding = config.padding
self.images = config.images
self.labels = config.labels
self.batch = config.batch
self.image_size = config.image_size - self.padding
self.label_size = config.label_size
def model(self):
d, m, r = self.model_params
size = self.padding + 1
conv = tf.contrib.layers.conv2d(self.images, d, size, 1, 'VALID', 'NHWC', activation_fn=None,
weights_initializer=tf.variance_scaling_initializer(2), scope='feature_layer')
height, width = tf.shape(self.labels)[1] // self.scale, tf.shape(self.labels)[2] // self.scale
img, loss, reuse = tf.image.resize_image_with_crop_or_pad(self.images, height, width), 0.0, False
for l in range(0, int(math.log(self.scale, 2))):
s = 2**(l+1)
with tf.variable_scope("recursive_block") as scope:
features = conv
for ri in range(r):
for i in range(1, m+1):
conv = tf.nn.leaky_relu(conv)
conv = tf.contrib.layers.conv2d(conv, d, 3, 1, 'SAME', 'NHWC', activation_fn=None, reuse=reuse,
weights_initializer=tf.variance_scaling_initializer(2), scope='embedding_layer{}'.format(i))
conv = tf.add(conv, features)
scope.reuse_variables()
conv = tf.nn.leaky_relu(conv)
conv = tf.contrib.layers.conv2d_transpose(conv, d, 4, 2, 'SAME', 'NHWC', activation_fn=None,
weights_initializer=tf.variance_scaling_initializer(2), reuse=reuse, scope='upsampling_layer')
res = tf.contrib.layers.conv2d(conv, 1, 3, 1, 'SAME', 'NHWC', activation_fn=None,
weights_initializer=tf.variance_scaling_initializer(2), reuse=reuse, scope='res_layer')
img = tf.nn.conv2d_transpose(img, bilinear_upsample_weights(2, 1), [self.batch, height * s, width * s, 1], [1,2,2,1], 'SAME', 'NHWC') + res
labels = bicubic_downsample(self.labels, self.scale // s) if s < self.scale else self.labels
loss = loss + tf.reduce_mean(tf.sqrt(tf.square(labels - img) + 1e-6))
reuse = True
self.loss_sum = loss
return img
def loss(self, Y, X):
return self.loss_sum