-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
183 lines (153 loc) · 4.95 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import argparse
import random
import numpy as np
import pandas as pd
import scipy.sparse as sp
import torch
import torch.nn as nn
from load_data import *
from model import *
from sensors2graph import *
from sklearn.preprocessing import StandardScaler
from utils import *
import dgl
parser = argparse.ArgumentParser(description="STGCN_WAVE")
parser.add_argument("--lr", default=0.001, type=float, help="learning rate")
parser.add_argument("--disablecuda", action="store_true", help="Disable CUDA")
parser.add_argument(
"--batch_size",
type=int,
default=50,
help="batch size for training and validation (default: 50)",
)
parser.add_argument(
"--epochs", type=int, default=50, help="epochs for training (default: 50)"
)
parser.add_argument(
"--num_layers", type=int, default=9, help="number of layers"
)
parser.add_argument("--window", type=int, default=144, help="window length")
parser.add_argument(
"--sensorsfilepath",
type=str,
default="./data/sensor_graph/graph_sensor_ids.txt",
help="sensors file path",
)
parser.add_argument(
"--disfilepath",
type=str,
default="./data/sensor_graph/distances_la_2012.csv",
help="distance file path",
)
parser.add_argument(
"--tsfilepath", type=str, default="./data/metr-la.h5", help="ts file path"
)
parser.add_argument(
"--savemodelpath",
type=str,
default="stgcnwavemodel.pt",
help="save model path",
)
parser.add_argument(
"--pred_len",
type=int,
default=5,
help="how many steps away we want to predict",
)
parser.add_argument(
"--control_str",
type=str,
default="TNTSTNTST",
help="model strcture controller, T: Temporal Layer, S: Spatio Layer, N: Norm Layer",
)
parser.add_argument(
"--channels",
type=int,
nargs="+",
default=[1, 16, 32, 64, 32, 128],
help="model strcture controller, T: Temporal Layer, S: Spatio Layer, N: Norm Layer",
)
args = parser.parse_args()
device = (
torch.device("cuda")
if torch.cuda.is_available() and not args.disablecuda
else torch.device("cpu")
)
with open(args.sensorsfilepath) as f:
sensor_ids = f.read().strip().split(",")
distance_df = pd.read_csv(args.disfilepath, dtype={"from": "str", "to": "str"})
adj_mx = get_adjacency_matrix(distance_df, sensor_ids)
sp_mx = sp.coo_matrix(adj_mx)
G = dgl.from_scipy(sp_mx)
df = pd.read_hdf(args.tsfilepath)
num_samples, num_nodes = df.shape
tsdata = df.to_numpy()
n_his = args.window
save_path = args.savemodelpath
n_pred = args.pred_len
n_route = num_nodes
blocks = args.channels
# blocks = [1, 16, 32, 64, 32, 128]
drop_prob = 0
num_layers = args.num_layers
batch_size = args.batch_size
epochs = args.epochs
lr = args.lr
W = adj_mx
len_val = round(num_samples * 0.1)
len_train = round(num_samples * 0.7)
train = df[:len_train]
val = df[len_train : len_train + len_val]
test = df[len_train + len_val :]
scaler = StandardScaler()
train = scaler.fit_transform(train)
val = scaler.transform(val)
test = scaler.transform(test)
x_train, y_train = data_transform(train, n_his, n_pred, device)
x_val, y_val = data_transform(val, n_his, n_pred, device)
x_test, y_test = data_transform(test, n_his, n_pred, device)
train_data = torch.utils.data.TensorDataset(x_train, y_train)
train_iter = torch.utils.data.DataLoader(train_data, batch_size, shuffle=True)
val_data = torch.utils.data.TensorDataset(x_val, y_val)
val_iter = torch.utils.data.DataLoader(val_data, batch_size)
test_data = torch.utils.data.TensorDataset(x_test, y_test)
test_iter = torch.utils.data.DataLoader(test_data, batch_size)
loss = nn.MSELoss()
G = G.to(device)
model = STGCN_WAVE(
blocks, n_his, n_route, G, drop_prob, num_layers, device, args.control_str
).to(device)
optimizer = torch.optim.RMSprop(model.parameters(), lr=lr)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=5, gamma=0.7)
min_val_loss = np.inf
for epoch in range(1, epochs + 1):
l_sum, n = 0.0, 0
model.train()
for x, y in train_iter:
y_pred = model(x).view(len(x), -1)
l = loss(y_pred, y)
optimizer.zero_grad()
l.backward()
optimizer.step()
l_sum += l.item() * y.shape[0]
n += y.shape[0]
scheduler.step()
val_loss = evaluate_model(model, loss, val_iter)
if val_loss < min_val_loss:
min_val_loss = val_loss
torch.save(model.state_dict(), save_path)
print(
"epoch",
epoch,
", train loss:",
l_sum / n,
", validation loss:",
val_loss,
)
best_model = STGCN_WAVE(
blocks, n_his, n_route, G, drop_prob, num_layers, device, args.control_str
).to(device)
best_model.load_state_dict(torch.load(save_path))
l = evaluate_model(best_model, loss, test_iter)
MAE, MAPE, RMSE = evaluate_metric(best_model, test_iter, scaler)
print("test loss:", l, "\nMAE:", MAE, ", MAPE:", MAPE, ", RMSE:", RMSE)