-
Notifications
You must be signed in to change notification settings - Fork 0
/
shapenet_part_loader.py
136 lines (118 loc) · 5.47 KB
/
shapenet_part_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
#from __future__ import print_function
import torch.utils.data as data
import os
import os.path
import torch
import json
import numpy as np
import sys
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
dataset_path=os.path.abspath(os.path.join(BASE_DIR, '../dataset/shapenet_part/shapenetcore_partanno_segmentation_benchmark_v0/'))
class PartDataset(data.Dataset):
def __init__(self, root=dataset_path, npoints=2500, classification=False, class_choice=None, split='train', normalize=True):
self.npoints = npoints
self.root = root
self.catfile = os.path.join(self.root, 'synsetoffset2category.txt')
self.cat = {}
self.classification = classification
self.normalize = normalize
with open(self.catfile, 'r') as f:
for line in f:
ls = line.strip().split()
self.cat[ls[0]] = ls[1]
# print(self.cat)
if not class_choice is None:
self.cat = {k: v for k, v in self.cat.items() if k in class_choice}
print(self.cat)
self.meta = {}
with open(os.path.join(self.root, 'train_test_split', 'shuffled_train_file_list.json'), 'r') as f:
train_ids = set([str(d.split('/')[2]) for d in json.load(f)])
with open(os.path.join(self.root, 'train_test_split', 'shuffled_val_file_list.json'), 'r') as f:
val_ids = set([str(d.split('/')[2]) for d in json.load(f)])
with open(os.path.join(self.root, 'train_test_split', 'shuffled_test_file_list.json'), 'r') as f:
test_ids = set([str(d.split('/')[2]) for d in json.load(f)])
for item in self.cat:
# print('category', item)
self.meta[item] = []
dir_point = os.path.join(self.root, self.cat[item], 'points')
dir_seg = os.path.join(self.root, self.cat[item], 'points_label')
# print(dir_point, dir_seg)
fns = sorted(os.listdir(dir_point))
if split == 'trainval':
fns = [fn for fn in fns if ((fn[0:-4] in train_ids) or (fn[0:-4] in val_ids))]
elif split == 'train':
fns = [fn for fn in fns if fn[0:-4] in train_ids]
elif split == 'val':
fns = [fn for fn in fns if fn[0:-4] in val_ids]
elif split == 'test':
fns = [fn for fn in fns if fn[0:-4] in test_ids]
else:
print('Unknown split: %s. Exiting..' % (split))
sys.exit(-1)
for fn in fns:
token = (os.path.splitext(os.path.basename(fn))[0])
self.meta[item].append((os.path.join(dir_point, token + '.pts'), os.path.join(dir_seg, token + '.seg'),self.cat[item], token))
self.datapath = []
for item in self.cat:
for fn in self.meta[item]:
self.datapath.append((item, fn[0], fn[1], fn[2], fn[3]))
self.classes = dict(zip(sorted(self.cat), range(len(self.cat))))
print(self.classes)
self.num_seg_classes = 0
if not self.classification:
for i in range(len(self.datapath)//50):
l = len(np.unique(np.loadtxt(self.datapath[i][2]).astype(np.uint8)))
if l > self.num_seg_classes:
self.num_seg_classes = l
# print(self.num_seg_classes)
self.cache = {} # from index to (point_set, cls, seg) tuple
self.cache_size = 18000
def __getitem__(self, index):
if index in self.cache:
# point_set, seg, cls= self.cache[index]
point_set, seg, cls, foldername, filename = self.cache[index]
else:
fn = self.datapath[index]
cls = self.classes[self.datapath[index][0]]
# cls = np.array([cls]).astype(np.int32)
point_set = np.loadtxt(fn[1]).astype(np.float32)
if self.normalize:
point_set = self.pc_normalize(point_set)
seg = np.loadtxt(fn[2]).astype(np.int64) - 1
foldername = fn[3]
filename = fn[4]
if len(self.cache) < self.cache_size:
self.cache[index] = (point_set, seg, cls, foldername, filename)
#print(point_set.shape, seg.shape)
choice = np.random.choice(len(seg), self.npoints, replace=True)
# resample
point_set = point_set[choice, :]
seg = seg[choice]
# To Pytorch
point_set = torch.from_numpy(point_set)
seg = torch.from_numpy(seg)
cls = torch.from_numpy(np.array([cls]).astype(np.int64))
if self.classification:
return point_set, cls
else:
return point_set, seg , cls
def __len__(self):
return len(self.datapath)
def pc_normalize(self, pc):
""" pc: NxC, return NxC """
l = pc.shape[0]
centroid = np.mean(pc, axis=0)
pc = pc - centroid
m = np.max(np.sqrt(np.sum(pc**2, axis=1)))
pc = pc / m
return pc
if __name__ == '__main__':
dset = PartDataset( root='./dataset/shapenetcore_partanno_segmentation_benchmark_v0/',classification=True, class_choice=None, npoints=4096, split='train')
# d = PartDataset( root='./dataset/shapenetcore_partanno_segmentation_benchmark_v0/',classification=False, class_choice=None, npoints=4096, split='test')
print(len(dset))
ps, cls = dset[10000]
print(cls)
# print(ps.size(), ps.type(), cls.size(), cls.type())
# print(ps)
# ps = ps.numpy()
# np.savetxt('ps'+'.txt', ps, fmt = "%f %f %f")