We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Hi, I was trying to follow the semi-supervised example (dataset AtriaSeg). When I ran the following command I got an error.
pymic_train config/unet3d_r10_em.cfg
torch.backends.cuda.matmul.allow_tf32 = True by default. This value defaults to True when PyTorch version in [1.7, 1.11] and may affect precision. See https://docs.monai.io/en/latest/precision_accelerating.html#precision-and-accelerating dataset tensor_type float dataset task_type seg dataset supervise_type semi_sup dataset root_dir ../../PyMIC_data/AtriaSeg/TrainingSet_crop/ dataset train_csv config/data/image_train_r10_lab.csv dataset train_csv_unlab config/data/image_train_r10_unlab.csv dataset valid_csv config/data/image_valid.csv dataset test_csv config/data/image_test.csv dataset train_batch_size 2 dataset train_batch_size_unlab 2 dataset train_transform ['RandomCrop', 'RandomFlip', 'NormalizeWithMeanStd', 'GammaCorrection', 'GaussianNoise', 'LabelToProbability'] dataset train_transform_unlab ['RandomCrop', 'RandomFlip', 'NormalizeWithMeanStd', 'GammaCorrection', 'GaussianNoise'] dataset valid_transform ['NormalizeWithMeanStd', 'LabelToProbability'] dataset test_transform ['NormalizeWithMeanStd'] dataset randomcrop_output_size [72, 96, 112] dataset randomcrop_foreground_focus False dataset randomcrop_foreground_ratio None dataset randomcrop_mask_label None dataset randomflip_flip_depth False dataset randomflip_flip_height True dataset randomflip_flip_width True dataset normalizewithmeanstd_channels [0] dataset gammacorrection_channels [0] dataset gammacorrection_gamma_min 0.7 dataset gammacorrection_gamma_max 1.5 network net_type UNet3D network class_num 2 network in_chns 1 network feature_chns [32, 64, 128, 256] network dropout [0.0, 0.0, 0.5, 0.5] network trilinear True network multiscale_pred False training gpus [1] training loss_type ['DiceLoss', 'CrossEntropyLoss'] training loss_weight [0.5, 0.5] training optimizer Adam training learning_rate 0.001 training momentum 0.9 training weight_decay 1e-05 training lr_scheduler ReduceLROnPlateau training lr_gamma 0.5 training reducelronplateau_patience 2000 training early_stop_patience 5000 training ckpt_save_dir model/unet3d_r10_em training iter_max 20000 training iter_valid 100 training iter_save [1000, 20000] semi_supervised_learning method_name EntropyMinimization semi_supervised_learning regularize_w 0.1 semi_supervised_learning rampup_start 1000 semi_supervised_learning rampup_end 15000 testing gpus [1] testing ckpt_mode 1 testing output_dir result/unet3d_r10_em testing post_process None testing sliding_window_enable False dataset tensor_type = float dataset task_type = seg dataset supervise_type = semi_sup dataset root_dir = ../../PyMIC_data/AtriaSeg/TrainingSet_crop/ dataset train_csv = config/data/image_train_r10_lab.csv dataset train_csv_unlab = config/data/image_train_r10_unlab.csv dataset valid_csv = config/data/image_valid.csv dataset test_csv = config/data/image_test.csv dataset train_batch_size = 2 dataset train_batch_size_unlab = 2 dataset train_transform = ['RandomCrop', 'RandomFlip', 'NormalizeWithMeanStd', 'GammaCorrection', 'GaussianNoise', 'LabelToProbability'] dataset train_transform_unlab = ['RandomCrop', 'RandomFlip', 'NormalizeWithMeanStd', 'GammaCorrection', 'GaussianNoise'] dataset valid_transform = ['NormalizeWithMeanStd', 'LabelToProbability'] dataset test_transform = ['NormalizeWithMeanStd'] dataset randomcrop_output_size = [72, 96, 112] dataset randomcrop_foreground_focus = False dataset randomcrop_foreground_ratio = None dataset randomcrop_mask_label = None dataset randomflip_flip_depth = False dataset randomflip_flip_height = True dataset randomflip_flip_width = True dataset normalizewithmeanstd_channels = [0] dataset gammacorrection_channels = [0] dataset gammacorrection_gamma_min = 0.7 dataset gammacorrection_gamma_max = 1.5 dataset labeltoprobability_class_num = 2 network net_type = UNet3D network class_num = 2 network in_chns = 1 network feature_chns = [32, 64, 128, 256] network dropout = [0.0, 0.0, 0.5, 0.5] network trilinear = True network multiscale_pred = False training gpus = [1] training loss_type = ['DiceLoss', 'CrossEntropyLoss'] training loss_weight = [0.5, 0.5] training optimizer = Adam training learning_rate = 0.001 training momentum = 0.9 training weight_decay = 1e-05 training lr_scheduler = ReduceLROnPlateau training lr_gamma = 0.5 training reducelronplateau_patience = 2000 training early_stop_patience = 5000 training ckpt_save_dir = model/unet3d_r10_em training iter_max = 20000 training iter_valid = 100 training iter_save = [1000, 20000] semi_supervised_learning method_name = EntropyMinimization semi_supervised_learning regularize_w = 0.1 semi_supervised_learning rampup_start = 1000 semi_supervised_learning rampup_end = 15000 testing gpus = [1] testing ckpt_mode = 1 testing output_dir = result/unet3d_r10_em testing post_process = None testing sliding_window_enable = False ********** Semi Supervised Learning ********** deterministric is true Traceback (most recent call last): File "/gpu_home/bori/miniconda3/envs/pymic3/bin/pymic_train", line 8, in <module> sys.exit(main()) File "/gpu_home/bori/miniconda3/envs/pymic3/lib/python3.9/site-packages/pymic/net_run/train.py", line 95, in main agent.run() File "/gpu_home/bori/miniconda3/envs/pymic3/lib/python3.9/site-packages/pymic/net_run/agent_abstract.py", line 311, in run self.create_dataset() File "/gpu_home/bori/miniconda3/envs/pymic3/lib/python3.9/site-packages/pymic/net_run/semi_sup/ssl_abstract.py", line 64, in create_dataset super(SSLSegAgent, self).create_dataset() File "/gpu_home/bori/miniconda3/envs/pymic3/lib/python3.9/site-packages/pymic/net_run/agent_abstract.py", line 247, in create_dataset self.train_set = self.get_stage_dataset_from_config('train') File "/gpu_home/bori/miniconda3/envs/pymic3/lib/python3.9/site-packages/pymic/net_run/agent_seg.py", line 61, in get_stage_dataset_from_config one_transform = self.transform_dict[name](transform_param) File "/gpu_home/bori/miniconda3/envs/pymic3/lib/python3.9/site-packages/pymic/transform/intensity.py", line 103, in __init__ self.channels = params['GaussianNoise_channels'.lower()] KeyError: 'gaussiannoise_channels'
I had to updgrade pytorch to a newer one due to my cuda version 11.6. Not it is: torch==1.11.0+cu113 torchvision==0.12.0+cu113 pymic==0.4.0
and Python is 3.9
The text was updated successfully, but these errors were encountered:
No branches or pull requests
Hi, I was trying to follow the semi-supervised example (dataset AtriaSeg). When I ran the following command I got an error.
I had to updgrade pytorch to a newer one due to my cuda version 11.6. Not it is:
torch==1.11.0+cu113
torchvision==0.12.0+cu113
pymic==0.4.0
and Python is 3.9
The text was updated successfully, but these errors were encountered: