-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathreplicates_run.R
174 lines (138 loc) · 6.41 KB
/
replicates_run.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
# Accounting for nuclear - and mito-genome in dairy cattle breeding: a simulation study
# Gabriela Mafra Fortuna
# Highlander Lab
# The Roslin Institute
# July 2020 - updated Aug 2021
# Execution script: run burn-in plus 4 evaluation scenarios with replicates
# Simulating four breeding scenarios, two trait scenarios (mt causal loci)
# - breeding scenarios: PBLUP | mtPBLUP | GBLUP | mtGBLUP
# - trait scenarios: all loci are causal | 1 locous is causal
# We are using the same breeding scheme but selecting on pedigree-based or genome-based
# estimated breeding values
rm(list=ls())
# load packages
library(AlphaSimR)
library(tidyverse)
library(Matrix)
# Define replicates and trait scenario: traitScen
# maxQTL -> all segSites are causal
# minQTL -> 1 segSite is causal
scriptsDir = "/home/v1gfortu/scripts/"
rep = 10
for(run in 1:rep){
for(ts in 1:2){
if(ts == 1){
# load functions
source(paste0(scriptsDir, "0_Functions.R"))
cat("All segregating sites are causal \n")
traitScen = "maxQTL"
source(paste0(scriptsDir, "1_Founders_mt.R"))
}else{
load("founders.RData")
cat("One segregating site is causal \n")
traitScen = "minQTL"
mQtl = 1
mSnp = i - mQtl
mtDNA <- mtDNA_sv
rm(mtDNA_sv, SP2)
SP2 = SimParam$new(mtDNA)$
restrSegSites(overlap=TRUE)$
addTraitA(nQtlPerChr = mQtl, mean = 0, var=varM)$
addSnpChip(nSnpPerChr = mSnp)
mtDNA <- newPop(mtDNA, simParam=SP2)
# store haplotyopes, define maternal lineages and haploGroups
mtfile <- as.matrix(pullSegSiteHaplo(mtDNA, simParam = SP2))
mtfile <- as.data.frame(mtfile)
mtfile <- mtfile %>% unite(haplotype, 1:length(mtfile), sep = "")
#sum(!duplicated(mtfile))
y <- unique(mtfile)
y <- rownames_to_column(y, "haploGroup")
mtfile <- mtfile %>% mutate(HaploGroup = with(y, haploGroup[match(mtfile$haplotype, y$haplotype)]),
ML = mtDNA@id, mTbv = mtDNA@gv)
mtfile <- mtfile %>% filter(!duplicated(HaploGroup)) %>% select(-HaploGroup)
mtDNA <- selectInd(mtDNA, nInd = nrow(mtfile), simParam = SP2, candidates = mtfile$ML, use="rand")
rm(y)
}
# Generate base population
source(paste0(scriptsDir, "2_burnin.R"))
# Breeding Scenarios
# (1) Standard Progeny-Testing:
rm(list = ls())
load("burnin.RData")
file.remove("Blupf901.dat", "renumf90.par")
preparePAR(model="PED")
nBreedingGen = 20
program = "PED"
model = "std"
source(paste0(scriptsDir, "3_BreedScheme.R"))
# save data
rm(list=setdiff(ls(), c("Accuracy", "Covars", "model", "program", "traitScen", "run", "ts")))
assign(paste0("acc_",model, program, traitScen, run), Accuracy); rm(Accuracy)
assign(paste0("cov_",model, program, traitScen, run), Covars); rm(Covars)
save.image(file=paste0(model, program, traitScen, run, ".RData"))
# (2) Mitochondria Progeny-Testing:
rm(list = ls())
load("burnin.RData")
file.remove("Blupf901.dat", "renumf90.par")
preparePAR(model="PEDmt")
nBreedingGen = 20
program = "PED"
model = "mt"
source(paste0(scriptsDir, "3_BreedScheme.R"))
# save data
rm(list=setdiff(ls(), c("Accuracy", "Covars", "model", "program", "traitScen", "run", "ts")))
assign(paste0("acc_",model, program, traitScen, run), Accuracy); rm(Accuracy)
assign(paste0("cov_",model, program, traitScen, run), Covars); rm(Covars)
save.image(file=paste0(model, program, traitScen, run, ".RData"))
# (3) Standard Genomic-Testing:
rm(list = ls())
load("burnin.RData")
file.remove("Blupf901.dat", "renumf90.par")
preparePAR(model="GEN")
nBreedingGen = 20
program = "GEN"
model = "std"
active<- c(do.call(c, unlist(breeding$eliteSire, recursive = FALSE)),
do.call(c, unlist(breeding$progenyTest, recursive = FALSE)),
do.call(c, unlist(breeding$youngBulls, recursive = FALSE)),
selectInd(c(do.call(c, unlist(breeding$eliteDam, recursive=FALSE)),
do.call(c, unlist(breeding$youngFemales, recursive=FALSE)),
do.call(c, unlist(breeding$Cows, recursive = FALSE))), 8944, use="rand"))
# create training population considering all males and random females
snpData(active)
source(paste0(scriptsDir, "3_BreedScheme.R"))
# save data
rm(list=setdiff(ls(), c("Accuracy", "Covars", "model", "program", "traitScen", "run", "ts")))
assign(paste0("acc_",model, program, traitScen, run), Accuracy); rm(Accuracy)
assign(paste0("cov_",model, program, traitScen, run), Covars); rm(Covars)
save.image(file=paste0(model, program, traitScen, run, ".RData"))
# (4) Mitochondria Genomic-Testing:
rm(list = ls())
load("burnin.RData")
file.remove("Blupf901.dat", "renumf90.par")
preparePAR(model="GENmt")
mtdnaGinv(mtDNA, SP2)
nBreedingGen = 20
program = "GEN"
model = "mt"
active<- c(do.call(c, unlist(breeding$eliteSire, recursive = FALSE)),
do.call(c, unlist(breeding$progenyTest, recursive = FALSE)),
do.call(c, unlist(breeding$youngBulls, recursive = FALSE)),
selectInd(c(do.call(c, unlist(breeding$eliteDam, recursive=FALSE)),
do.call(c, unlist(breeding$youngFemales, recursive=FALSE)),
do.call(c, unlist(breeding$Cows, recursive = FALSE))), 8944, use="rand"))
# create training population considering all males and random females
snpData(active)
source(paste0(scriptsDir, "3_BreedScheme.R"))
# save data
rm(list=setdiff(ls(), c("Accuracy", "Covars", "model", "program", "traitScen", "run", "ts")))
assign(paste0("acc_",model, program, traitScen, run), Accuracy); rm(Accuracy)
assign(paste0("cov_",model, program, traitScen, run), Covars); rm(Covars)
save.image(file=paste0(model, program, traitScen, run, ".RData"))
#clear old files
file.remove("Blupf901.dat","Blupf90.ped","blup.log","burnin.RData","freqdata.count","Gen_call_rate","mrk2.tmp",
"mrk.tmp","mtdnaGinv.txt","newfile","renadd02.ped","renf90.dat",
"renf90.fields","renf90.inb","renf90.par","renf90.tables","renumf90.par",
"renum.log","solutions","sum2pq","snp.dat","snp.dat_XrefID")
}
}