-
Notifications
You must be signed in to change notification settings - Fork 20
/
test.py
279 lines (246 loc) · 10.4 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
import os
import cv2
import copy
import shutil
import numpy as np
import torch
import torch.nn as nn
from torch.utils.data import DataLoader, Dataset
from torchvision import transforms
from sklearn.metrics import roc_auc_score
from models.scse import SCSEUnet
gpu_ids = '0, 1'
os.environ['CUDA_VISIBLE_DEVICES'] = gpu_ids
class MyDataset(Dataset):
def __init__(self, test_path='', size=896):
self.test_path = test_path
self.size = size
self.filelist = sorted(os.listdir(self.test_path))
self.transform = transforms.Compose([
np.float32,
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
])
def __getitem__(self, idx):
return self.load_item(idx)
def __len__(self):
return len(self.filelist)
def load_item(self, idx):
fname1, fname2 = self.test_path + self.filelist[idx], ''
img = cv2.imread(fname1)[..., ::-1]
H, W, _ = img.shape
mask = np.zeros([H, W, 3])
H, W, _ = img.shape
img = img.astype('float') / 255.
mask = mask.astype('float') / 255.
return self.transform(img), self.tensor(mask[:, :, :1]), fname1.split('/')[-1]
def tensor(self, img):
return torch.from_numpy(img).float().permute(2, 0, 1)
class Detector(nn.Module):
def __init__(self):
super(Detector, self).__init__()
self.name = 'detector'
self.det_net = SCSEUnet(backbone_arch='senet154', num_channels=3)
def forward(self, Ii):
Mo = self.det_net(Ii)
return Mo
class Model(nn.Module):
def __init__(self):
super(Model, self).__init__()
self.save_dir = 'weights/'
self.networks = Detector()
self.gen = nn.DataParallel(self.networks).cuda()
def forward(self, Ii):
return self.gen(Ii)
def load(self, path=''):
self.gen.load_state_dict(torch.load(self.save_dir + path + '%s_weights.pth' % self.networks.name))
def forensics_test(model):
test_size = '896'
test_path = 'data/input/'
decompose(test_path, test_size)
print('Decomposition complete.')
test_dataset = MyDataset(test_path='temp/input_decompose_' + test_size + '/', size=int(test_size))
path_out = 'temp/input_decompose_' + test_size + '_pred/'
test_loader = DataLoader(dataset=test_dataset, batch_size=1, shuffle=False, num_workers=1)
rm_and_make_dir(path_out)
for items in test_loader:
Ii, Mg = (item.cuda() for item in items[:-1])
filename = items[-1]
Mo = model(Ii)
Mo = Mo * 255.
Mo = Mo.permute(0, 2, 3, 1).cpu().detach().numpy()
for i in range(len(Mo)):
Mo_tmp = Mo[i][..., ::-1]
cv2.imwrite(path_out + filename[i][:-4] + '.png', Mo_tmp)
print('Prediction complete.')
if os.path.exists('temp/input_decompose_' + test_size + '/'):
shutil.rmtree('temp/input_decompose_' + test_size + '/')
path_pre = merge(test_path, test_size)
print('Merging complete.')
path_gt = 'data/mask/'
if os.path.exists(path_gt):
flist = sorted(os.listdir(path_pre))
auc, f1, iou = [], [], []
for file in flist:
pre = cv2.imread(path_pre + file)
gt = cv2.imread(path_gt + file[:-4] + '.png')
H, W, C = pre.shape
Hg, Wg, C = gt.shape
if H != Hg or W != Wg:
gt = cv2.resize(gt, (W, H))
gt[gt > 127] = 255
gt[gt <= 127] = 0
if np.max(gt) != np.min(gt):
auc.append(roc_auc_score((gt.reshape(H * W * C) / 255).astype('int'), pre.reshape(H * W * C) / 255.))
pre[pre > 127] = 255
pre[pre <= 127] = 0
a, b = metric(pre / 255, gt / 255)
f1.append(a)
iou.append(b)
print('Evaluation: AUC: %5.4f, F1: %5.4f, IOU: %5.4f' % (np.mean(auc), np.mean(f1), np.mean(iou)))
return 0
def decompose(test_path, test_size):
flist = sorted(os.listdir(test_path))
size_list = [int(test_size)]
for size in size_list:
path_out = 'temp/input_decompose_' + str(size) + '/'
rm_and_make_dir(path_out)
rtn_list = [[]]
for file in flist:
img = cv2.imread(test_path + file)
# img = cv2.rotate(img, cv2.cv2.ROTATE_180)
H, W, _ = img.shape
size_idx = 0
while size_idx < len(size_list) - 1:
if H < size_list[size_idx+1] or W < size_list[size_idx+1]:
break
size_idx += 1
rtn_list[size_idx].append(file)
size = size_list[size_idx]
path_out = 'temp/input_decompose_' + str(size) + '/'
X, Y = H // (size // 2) + 1, W // (size // 2) + 1
idx = 0
for x in range(X-1):
if x * size // 2 + size > H:
break
for y in range(Y-1):
if y * size // 2 + size > W:
break
img_tmp = img[x * size // 2: x * size // 2 + size, y * size // 2: y * size // 2 + size, :]
cv2.imwrite(path_out + file[:-4] + '_%03d.png' % idx, img_tmp)
idx += 1
img_tmp = img[x * size // 2: x * size // 2 + size, -size:, :]
cv2.imwrite(path_out + file[:-4] + '_%03d.png' % idx, img_tmp)
idx += 1
for y in range(Y - 1):
if y * size // 2 + size > W:
break
img_tmp = img[-size:, y * size // 2: y * size // 2 + size, :]
cv2.imwrite(path_out + file[:-4] + '_%03d.png' % idx, img_tmp)
idx += 1
img_tmp = img[-size:, -size:, :]
cv2.imwrite(path_out + file[:-4] + '_%03d.png' % idx, img_tmp)
idx += 1
return rtn_list
def merge(path, test_size):
path_d = 'temp/input_decompose_' + test_size + '_pred/'
path_r = 'data/output/'
rm_and_make_dir(path_r)
size = int(test_size)
gk = gkern(size)
gk = 1 - gk
for file in sorted(os.listdir(path)):
img = cv2.imread(path + file)
H, W, _ = img.shape
X, Y = H // (size // 2) + 1, W // (size // 2) + 1
idx = 0
rtn = np.ones((H, W, 3), dtype=np.float32) * -1
for x in range(X-1):
if x * size // 2 + size > H:
break
for y in range(Y-1):
if y * size // 2 + size > W:
break
img_tmp = cv2.imread(path_d + file[:-4] + '_%03d.png' % idx)
weight_cur = copy.deepcopy(rtn[x * size // 2: x * size // 2 + size, y * size // 2: y * size // 2 + size, :])
h1, w1, _ = weight_cur.shape
gk_tmp = cv2.resize(gk, (w1, h1))
weight_cur[weight_cur != -1] = gk_tmp[weight_cur != -1]
weight_cur[weight_cur == -1] = 0
weight_tmp = copy.deepcopy(weight_cur)
weight_tmp = 1 - weight_tmp
rtn[x * size // 2: x * size // 2 + size, y * size // 2: y * size // 2 + size, :] = weight_cur * rtn[x * size // 2: x * size // 2 + size, y * size // 2: y * size // 2 + size, :] + weight_tmp * img_tmp
idx += 1
img_tmp = cv2.imread(path_d + file[:-4] + '_%03d.png' % idx)
weight_cur = copy.deepcopy(rtn[x * size // 2: x * size // 2 + size, -size:, :])
h1, w1, _ = weight_cur.shape
gk_tmp = cv2.resize(gk, (w1, h1))
weight_cur[weight_cur != -1] = gk_tmp[weight_cur != -1]
weight_cur[weight_cur == -1] = 0
weight_tmp = copy.deepcopy(weight_cur)
weight_tmp = 1 - weight_tmp
rtn[x * size // 2: x * size // 2 + size, -size:, :] = weight_cur * rtn[x * size // 2: x * size // 2 + size, -size:, :] + weight_tmp * img_tmp
idx += 1
for y in range(Y - 1):
if y * size // 2 + size > W:
break
img_tmp = cv2.imread(path_d + file[:-4] + '_%03d.png' % idx)
weight_cur = copy.deepcopy(rtn[-size:, y * size // 2: y * size // 2 + size, :])
h1, w1, _ = weight_cur.shape
gk_tmp = cv2.resize(gk, (w1, h1))
weight_cur[weight_cur != -1] = gk_tmp[weight_cur != -1]
weight_cur[weight_cur == -1] = 0
weight_tmp = copy.deepcopy(weight_cur)
weight_tmp = 1 - weight_tmp
rtn[-size:, y * size // 2: y * size // 2 + size, :] = weight_cur * rtn[-size:, y * size // 2: y * size // 2 + size, :] + weight_tmp * img_tmp
idx += 1
img_tmp = cv2.imread(path_d + file[:-4] + '_%03d.png' % idx)
weight_cur = copy.deepcopy(rtn[-size:, -size:, :])
h1, w1, _ = weight_cur.shape
gk_tmp = cv2.resize(gk, (w1, h1))
weight_cur[weight_cur != -1] = gk_tmp[weight_cur != -1]
weight_cur[weight_cur == -1] = 0
weight_tmp = copy.deepcopy(weight_cur)
weight_tmp = 1 - weight_tmp
rtn[-size:, -size:, :] = weight_cur * rtn[-size:, -size:, :] + weight_tmp * img_tmp
idx += 1
# rtn[rtn < 127] = 0
# rtn[rtn >= 127] = 255
cv2.imwrite(path_r + file[:-4] + '.png', np.uint8(rtn))
return path_r
def gkern(kernlen=7, nsig=3):
"""Returns a 2D Gaussian kernel."""
# x = np.linspace(-nsig, nsig, kernlen+1)
# kern1d = np.diff(st.norm.cdf(x))
# kern2d = np.outer(kern1d, kern1d)
# rtn = kern2d/kern2d.sum()
# rtn = np.concatenate([rtn[..., None], rtn[..., None], rtn[..., None]], axis=2)
rtn = [[0, 0, 0],
[0, 1, 0],
[0, 0, 0]]
rtn = np.array(rtn, dtype=np.float32)
rtn = np.concatenate([rtn[..., None], rtn[..., None], rtn[..., None]], axis=2)
rtn = cv2.resize(rtn, (kernlen, kernlen))
return rtn
def rm_and_make_dir(path):
if os.path.exists(path):
shutil.rmtree(path)
os.makedirs(path)
def metric(premask, groundtruth):
seg_inv, gt_inv = np.logical_not(premask), np.logical_not(groundtruth)
true_pos = float(np.logical_and(premask, groundtruth).sum()) # float for division
true_neg = np.logical_and(seg_inv, gt_inv).sum()
false_pos = np.logical_and(premask, gt_inv).sum()
false_neg = np.logical_and(seg_inv, groundtruth).sum()
f1 = 2 * true_pos / (2 * true_pos + false_pos + false_neg + 1e-6)
cross = np.logical_and(premask, groundtruth)
union = np.logical_or(premask, groundtruth)
iou = np.sum(cross) / (np.sum(union) + 1e-6)
if np.sum(cross) + np.sum(union) == 0:
iou = 1
return f1, iou
if __name__ == '__main__':
model = Model().cuda()
model.load()
model.eval()
forensics_test(model=model)