-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathtrain_closed_control_points.py
271 lines (236 loc) · 8.53 KB
/
train_closed_control_points.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
import json
import logging
import sys
from shutil import copyfile
import numpy as np
import torch.optim as optim
import torch.utils.data
from tensorboard_logger import configure, log_value
from torch.autograd import Variable
from torch.optim.lr_scheduler import ReduceLROnPlateau
from torch.utils.data import DataLoader
from read_config import Config
from src.dataset import DataSetControlPointsPoisson
from src.dataset import generator_iter
from src.loss import control_points_permute_closed_reg_loss
from src.loss import laplacian_loss
from src.loss import (
uniform_knot_bspline,
spline_reconstruction_loss_one_sided,
)
from src.model import DGCNNControlPoints
from src.utils import rescale_input_outputs
np.set_printoptions(precision=4)
config = Config(sys.argv[1])
model_name = config.model_path.format(
config.mode,
config.num_points,
config.loss_weight,
config.batch_size,
config.lr,
config.num_train,
config.num_test,
config.loss_weight,
)
print(model_name)
userspace = ".."
configure("logs/tensorboard/{}".format(model_name), flush_secs=5)
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
handler = logging.StreamHandler(sys.stdout)
formatter = logging.Formatter("%(asctime)s:%(name)s:%(message)s")
file_handler = logging.FileHandler(
"logs/logs/{}.log".format(model_name), mode="w"
)
file_handler.setFormatter(formatter)
logger.addHandler(file_handler)
logger.addHandler(handler)
with open(
"logs/configs/{}_config.json".format(model_name), "w"
) as file:
json.dump(vars(config), file)
source_file = __file__
destination_file = "logs/scripts/{}_{}".format(
model_name, __file__.split("/")[-1]
)
copyfile(source_file, destination_file)
control_decoder = DGCNNControlPoints(20, num_points=10, mode=config.mode)
if torch.cuda.device_count() > 1:
control_decoder = torch.nn.DataParallel(control_decoder)
control_decoder.cuda()
split_dict = {"train": config.num_train, "val": config.num_val, "test": config.num_test}
dataset = DataSetControlPointsPoisson(
path=config.dataset_path,
batch_size=config.batch_size,
splits=split_dict,
size_v=config.grid_size,
size_u=config.grid_size,
closed=True
)
align_canonical = True
anisotropic = True
if_augmentation = True
if_rand_num_points = True
get_train_data = dataset.load_train_data(
if_regular_points=True, align_canonical=align_canonical, anisotropic=anisotropic, if_augment=if_augmentation
)
get_val_data = dataset.load_val_data(
if_regular_points=True, align_canonical=align_canonical, anisotropic=anisotropic
)
loader = generator_iter(get_train_data, int(1e10))
get_train_data = iter(
DataLoader(
loader,
batch_size=1,
shuffle=False,
collate_fn=lambda x: x,
num_workers=0,
pin_memory=False,
)
)
loader = generator_iter(get_val_data, int(1e10))
get_val_data = iter(
DataLoader(
loader,
batch_size=1,
shuffle=False,
collate_fn=lambda x: x,
num_workers=0,
pin_memory=False,
)
)
optimizer = optim.Adam(control_decoder.parameters(), lr=config.lr)
scheduler = ReduceLROnPlateau(
optimizer, mode="min", factor=0.5, patience=10, verbose=True, min_lr=3e-5
)
nu, nv = uniform_knot_bspline(20, 20, 3, 3, 30)
nu = torch.from_numpy(nu.astype(np.float32)).cuda()
nv = torch.from_numpy(nv.astype(np.float32)).cuda()
prev_test_cd = 1e8
for e in range(config.epochs):
train_reg = []
train_str = []
train_cd = []
train_lap = []
control_decoder.train()
for train_b_id in range(config.num_train // config.batch_size):
torch.cuda.empty_cache()
optimizer.zero_grad()
points_, parameters, control_points, scales, _ = next(get_train_data)[0]
control_points = Variable(
torch.from_numpy(control_points.astype(np.float32))
).cuda()
points = Variable(torch.from_numpy(points_.astype(np.float32))).cuda()
points = points.permute(0, 2, 1)
if if_rand_num_points:
rand_num_points = config.num_points + np.random.choice(np.arange(-300, 1300), 1)[0]
else:
rand_num_points = config.num_points
output = control_decoder(points[:, :, 0:rand_num_points])
if anisotropic:
# rescale all tensors to original dimensions for evaluation
scales, output, points, control_points = rescale_input_outputs(scales, output, points, control_points,
config.batch_size)
# Chamfer Distance loss, between predicted and GT surfaces
cd, reconstructed_points = spline_reconstruction_loss_one_sided(
nu, nv, output, points, config
)
# permute_cp has the best permutation of gt control points grid
l_reg, permute_cp = control_points_permute_closed_reg_loss(
output, control_points, config.grid_size, 20
)
laplac_loss = laplacian_loss(
output.reshape((config.batch_size, config.grid_size, config.grid_size, 3)),
permute_cp,
dist_type="l2",
)
loss = l_reg * config.loss_weight + (cd) * (1 - config.loss_weight) # laplac_loss
loss.backward()
train_cd.append(cd.data.cpu().numpy())
train_reg.append(l_reg.data.cpu().numpy())
train_lap.append(laplac_loss.data.cpu().numpy())
optimizer.step()
log_value(
"cd",
cd.data.cpu().numpy(),
train_b_id + e * (config.num_train // config.batch_size),
)
log_value(
"l_reg",
l_reg.data.cpu().numpy(),
train_b_id + e * (config.num_train // config.batch_size),
)
log_value(
"l_lap",
laplac_loss.data.cpu().numpy(),
train_b_id + e * (config.num_train // config.batch_size),
)
print(
"\rEpoch: {} iter: {}, loss: {}".format(
e, train_b_id, loss.item()
),
end="",
)
distances = []
test_reg = []
test_cd = []
test_str = []
test_lap = []
control_decoder.eval()
for val_b_id in range(config.num_test // config.batch_size - 1):
torch.cuda.empty_cache()
points_, parameters, control_points, scales, _ = next(get_val_data)[0]
control_points = Variable(
torch.from_numpy(control_points.astype(np.float32))
).cuda()
points = Variable(torch.from_numpy(points_.astype(np.float32))).cuda()
points = points.permute(0, 2, 1)
with torch.no_grad():
output = control_decoder(points[:, :, 0:config.num_points])
if anisotropic:
# rescale all tensors to original dimensions for evaluation
scales, output, points, control_points = rescale_input_outputs(scales, output, points, control_points,
config.batch_size)
# Chamfer Distance loss, between predicted and GT surfaces
cd, reconstructed_points = spline_reconstruction_loss_one_sided(
nu, nv, output, points, config
)
l_reg, permute_cp = control_points_permute_closed_reg_loss(
output, control_points, config.grid_size, 20
)
laplac_loss = laplacian_loss(
output.reshape((config.batch_size, config.grid_size, config.grid_size, 3)),
permute_cp,
dist_type="l2",
)
loss = l_reg * config.loss_weight + (cd + laplac_loss) * (
1 - config.loss_weight
)
test_reg.append(l_reg.data.cpu().numpy())
test_cd.append(cd.data.cpu().numpy())
test_lap.append(laplac_loss.data.cpu().numpy())
print("\n")
logger.info(
"Epoch: {}/{} => Tr lreg: {}, Ts loss: {}, Tr CD: {}, Ts CD: {}, Tr lap: {}, Ts lap: {}".format(
e,
config.epochs,
np.mean(train_reg),
np.mean(test_reg),
np.mean(train_cd),
np.mean(test_cd),
np.mean(train_lap),
np.mean(test_lap),
)
)
log_value("train_cd", np.mean(train_cd), e)
log_value("test_cd", np.mean(test_cd), e)
log_value("train_reg", np.mean(train_reg), e)
log_value("test_reg", np.mean(test_reg), e)
scheduler.step(np.mean(test_cd))
if prev_test_cd > np.mean(test_cd):
logger.info("CD improvement, saving model at epoch: {}".format(e))
prev_test_cd = np.mean(test_cd)
torch.save(
control_decoder.state_dict(),
"logs/trained_models/{}.pth".format(model_name),
)