-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathinductor.c
672 lines (531 loc) · 18.3 KB
/
inductor.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
/* ************************************************************************
*
* inductor measurements
*
* (c) 2012-2023 by Markus Reschke
* based on code from Karl-Heinz Kübbeler
*
* ************************************************************************ */
/* local includes */
#include "config.h" /* global configuration */
#ifdef SW_INDUCTOR
/*
* local constants
*/
/* source management */
#define INDUCTOR_C
/*
* include header files
*/
/* local includes */
#include "common.h" /* common header file */
#include "variables.h" /* global variables */
#include "functions.h" /* external functions */
/*
* local defines
*/
/* mode bitfield */
#define MODE_LOW_CURRENT 0b00000001 /* low test current */
#define MODE_HIGH_CURRENT 0b00000010 /* high test current */
#define MODE_DELAYED_START 0b00000100 /* delayed start */
/* ************************************************************************
* inductance measurements
* ************************************************************************ */
/*
Current of an inductor when switching on power:
i_L(t) = I_0 * (1 - e^(-t R_total / L))
I_0: end current
i_L(t) / I_0 = 1 - e^(-t R_total / L)
e^(-t R_total / L) = 1 - (i_L(t) / I_0))
With ln(e^x) = x we get:
-t R_total / L = ln(1 - (i_L(t) / I_0))
L = -t R_total / ln(1 - (i_L(t) / I_0))
So we can measure the current at a specific time after switching on to
get L.
R_total = Ri_H + R_L + Rl + Ri_L
I_0 = 5V / R_total = 5V / (Ri_H + R_L + Rl + Ri_L)
We get i_L(t) by measuring the voltage accross a shunt resistor. For a proper
time measurement we'll use the integrated analog comparator and a timer, i.e.
we'll wait until the voltage across the shunt resistor reaches the voltage
of the bandgap reference.
R_shunt = Rl + Ri_L
i_L(t_stop) = U_ref / R_shunt
L = -t_stop * R_total / ln(1 - ((U_ref / R_shunt) / (5V / R_total)))
= -t_stop * R_total / ln(1 - (U_ref * R_total) / (5V * R_shunt))
Instead of calculating L directly we'll use a table with pre-calculated values
to speed up things and keep the firmware small. The table is based on the
the ratio:
a = (U_ref * R_total) / (5V * R_shunt)
Estimates for minimal and maximal values (R_L max. 2k Ohm):
- min: 1.0V * 720 Ohm / 5V * 700 Ohm = 0.206
- max: 1.2V * 2770 Ohm / 5V * 700 Ohm = 0.950
999 is maximum due to ln(1-a/1000)
Hence the maximum R_L supported is 2k Ohms.
Table:
- ratio a = ((U_ref * R_total) / (5V * R_shunt)) * 10^3
estimated range: 206 - 977
- values are: (-1 / ln(1 - (a * 10^-3))) * 10^3
- internal scale factor 10^3
- bc:
- options: -i -l
- define x (a) { return (-1 / l(1 - a/1000)) * 1000; }
For a small inductance we have to use a higher test current, i.e. using Ri_L as
current shunt (Rl = 0).
Estimates for minimal and maximal values (R_L max. 40 Ohm):
- min: 1.0V * 40 Ohm / 5V * 20 Ohm = 0.4
- max: 1.2V * 80 Ohm / 5V * 20 Ohm = 0.960
999 is maximum due to ln(1-a/1000)
Hence the maximum R_L supported is 40 Ohms.
Since the range overlaps with the low test current we may use a single table.
*/
/*
* measure inductance via time between two probe pins
* - probes have to be set by UpdateProbes()
*
* requires:
* - pointer to time variable (ns)
* - measurement mode (low/high current, delayed start)
*
* returns:
* - 3 on success
* - 2 if inductance is too low
* - 1 if inductance is too high (not implemented)
* - 0 on any problem
*/
uint8_t MeasureInductance(uint32_t *Time, uint8_t Mode)
{
uint8_t Flag = 3; /* return value */
uint8_t Test; /* test flag */
uint8_t Offset; /* counter offet */
uint16_t Ticks_L; /* timer counter */
uint16_t Ticks_H; /* timer overflow counter */
uint32_t Counter; /* counter */
/* sanity check */
if (Time == NULL) return 0;
DischargeProbes(); /* try to discharge probes */
if (Check.Found == COMP_ERROR) return 0;
/*
* measurement modes:
* - low current: Gnd -- Rl -- probe-2 / probe-1 -- Vcc
* - high current: Gnd -- probe-2 / probe-1 -- Vcc
*/
/*
* init hardware
*/
/* set probes: Gnd -- (Rl) -- probe-2 / Gnd -- probe-1 */
R_PORT = 0; /* set resistor port to low */
ADC_PORT = 0; /* set ADC port to low */
if (Mode & MODE_LOW_CURRENT) /* low current */
{
/* set probes: Gnd -- Rl -- probe-2 / Gnd -- probe-1 */
R_DDR = Probes.Rl_2; /* pull down probe-2 via Rl */
ADC_DDR = Probes.Pin_1; /* pull down probe-1 directly */
}
else /* high current */
{
/* set probes: Gnd -- probe-2 / Gnd -- probe-1 */
R_DDR = 0; /* disable probe resistors */
/* pull down probe-1 and probe-2 directly */
ADC_DDR = Probes.Pin_1 | Probes.Pin_2;
}
/* set up analog comparator */
ADCSRA = ADC_CLOCK_DIV; /* disable ADC, but keep clock dividers */
ADCSRB = (1 << ACME); /* use ADC multiplexer as negative input */
ADMUX = ADC_REF_BANDGAP | Probes.Ch_2; /* switch ADC multiplexer to probe-2 */
/* and set AREF to bandgap reference */
ACSR = (1 << ACBG) | (1 << ACIC); /* use bandgap as positive input, trigger timer1 */
#ifndef ADC_LARGE_BUFFER_CAP
/* buffer cap: 1nF or none at all */
wait1ms(); /* time for voltage stabilization */
#else
/* buffer cap: 100nF */
wait10ms(); /* time for voltage stabilization */
#endif
wdt_reset(); /* reset watchdog */
/*
* set up timer
*/
Ticks_H = 0; /* reset timer overflow counter */
TCCR1A = 0; /* set default mode */
TCCR1B = 0; /* set more timer modes */
/* timer stopped, falling edge detection, noise canceler disabled */
TCNT1 = 0; /* set Counter1 to 0 */
/* clear all flags (input capture, compare A & B, overflow */
TIFR1 = (1 << ICF1) | (1 << OCF1B) | (1 << OCF1A) | (1 << TOV1);
if (Mode & MODE_DELAYED_START) /* delayed start */
{
Test = MCU_CYCLES_PER_US; /* MCU cycles per µs */
/* change probes: Gnd -- (Rl) -- probe-2 / probe-1 -- Vcc */
ADC_PORT = Probes.Pin_1; /* pull up probe-1 directly */
/*
* delay timer by about 3-4µs to skip capacitive effects of large inductors
* - a loop run needs 4 cycles, the last loop run just 3
* - cycles burnt: <MCU cycles per µs> * 4 - 1
* time delay: 4µs - 1 MCU cycle
*/
while (Test > 0)
{
Test--;
asm volatile("nop"); /* 1 MCU cycle */
}
TCCR1B |= (1 << CS10); /* start timer (1/1 clock divider) */
}
else /* immediate start */
{
TCCR1B |= (1 << CS10); /* start timer (1/1 clock divider) */
/* change probes: Gnd -- Rl -- probe-2 / probe-1 -- Vcc */
ADC_PORT = Probes.Pin_1; /* pull up probe-1 directly */
}
/*
* timer loop
* - run until voltage threshold is reached
* - detect timer overflows
*/
while (1)
{
Test = TIFR1; /* get timer1 flags */
/* end loop if input capture flag is set (= same voltage) */
if (Test & (1 << ICF1)) break;
/* detect timer overflow by checking the overflow flag */
if (Test & (1 << TOV1))
{
/* happens at 65.536ms for 1MHz or 8.192ms for 8MHz */
TIFR1 = (1 << TOV1); /* reset flag */
Ticks_H++; /* increase overflow counter */
/* if it takes too long (0.26s) */
if (Ticks_H == (CPU_FREQ / 250000))
{
Flag = 0; /* signal timeout */
break; /* end loop */
}
}
}
/* stop counter */
TCCR1B = 0; /* stop timer */
TIFR1 = (1 << ICF1); /* reset Input Capture flag */
Ticks_L = ICR1; /* get counter value */
/* prepare cut off: Gnd -- Rl -- probe-2 / probe-1 -- Rl -- Gnd */
R_DDR = Probes.Rl_2 | Probes.Rl_1;
/* stop current flow */
ADC_DDR = 0;
/* catch missed timer overflow */
if ((TCNT1 > Ticks_L) && (Test & (1 << TOV1)))
{
TIFR1 = (1 << TOV1); /* reset overflow flag */
Ticks_H++; /* increase overflow counter */
}
/* enable ADC again */
ADCSRA = (1 << ADEN) | (1 << ADIF) | ADC_CLOCK_DIV;
ADCSRB &= ~(1 << ACME); /* disable ADC multiplexer as negative input */
/*
* process counters
*/
if (Flag) /* got valid measurement */
{
/* combine both counter values */
Counter = (uint32_t)Ticks_L; /* lower 16 bits */
Counter |= (uint32_t)Ticks_H << 16; /* upper 16 bits */
/*
* offset handling
*/
Offset = 3; /* processing overhead */
/* start offset */
if (Mode & MODE_DELAYED_START) /* delayed start */
{
/* add MCU cycles for delayed start */
Counter += (MCU_CYCLES_PER_US * 4) - 1;
}
else /* immediate start */
{
Offset++; /* timer started one cycle too early */
}
/* method and MCU clock specific offset */
if (Mode & MODE_LOW_CURRENT) /* low current check */
{
/* based on MCU clock */
#if CPU_FREQ >= 16000000
Offset += 3;
#else
Offset += 1;
#endif
}
#if CPU_FREQ >= 16000000
else /* high current check */
{
Offset += 1;
}
#endif
if (Counter > Offset) Counter -= Offset; /* subtract offset */
else Counter = 0; /* prevent underflow */
/*
* time handling
*/
/* convert counter (MCU cycles) to time (in ns) */
Counter *= (10000 / MCU_CYCLES_PER_US); /* convert to 0.1 ns */
Counter += 5; /* for rounding */
Counter /= 10; /* scale to ns */
*Time = Counter; /* save time */
/* check for lower limit */
if (Mode & MODE_LOW_CURRENT) /* low current mode */
{
if (Counter < 1250) /* time < 1.25µs */
{
Flag = 2; /* signal "inductance too low" */
}
}
else /* high current mode */
{
if (Counter <= 100) /* time <= 100ns */
{
Flag = 2; /* signal "inductance too low" */
}
}
}
/* update reference source for next ADC run */
Cfg.Ref = ADC_REF_BANDGAP; /* we've used the bandgap reference */
return Flag;
}
/*
* measure inductance between two probe pins of a resistor
*
* requires:
* - pointer the resistor data structure
*
* returns:
* - 1 on success
* - 0 on any error
*/
uint8_t MeasureInductor(Resistor_Type *Resistor)
{
uint8_t Test = 0; /* return value / measurement result */
uint8_t Mode; /* measurement mode */
uint8_t Scale; /* scale of value */
uint16_t R_total; /* total resistance */
uint16_t Factor; /* factor */
uint16_t Temp;
int16_t Offset = 0; /* offset for U_ref */
uint32_t Value; /* value */
uint32_t Time1; /* time #1 */
/* reset data */
Inductor.Scale = 0;
Inductor.Value = 0;
/* sanity check */
if (Resistor == NULL) return Test;
/* limit resistance to 2k (feasibilty & prevent variable overflow) */
if (CmpValue(Resistor->Value, Resistor->Scale, 2000, 0) >= 0) return Test;
/*
* Manage measurements:
* - run in delayed mode to deal with capacitive effects of large inductors
* (low current only)
* - run in low current mode to check for high inductance
* - run in high current mode to check for low inductance, when high
* current mode failed and DUT's resistance is low
*/
UpdateProbes2(Resistor->A, Resistor->B); /* update probes */
/*
* low current & delayed start
* - to catch large inductance with capacitive effect
*/
Mode = MODE_LOW_CURRENT | MODE_DELAYED_START;
Test = MeasureInductance(&Time1, Mode);
if (Test == 3) /* valid measurement */
{
/* a valid time should be larger than the delay (4µs) */
if (Time1 <= 5000) /* <= 5µs */
{
Test = 0; /* invalid time */
}
}
/*
* low current & immediate start
* - to check for high inductance
*/
if (Test == 0) /* no valid measurement yet */
{
Mode = MODE_LOW_CURRENT;
Test = MeasureInductance(&Time1, Mode);
if (Test == 2) /* inductance too low */
{
/*
* high current & immediate start
* - to check for low inductance
*/
/* if resistance < 40 Ohms we may run the high current test */
if (CmpValue(Resistor->Value, Resistor->Scale, 40, 0) < 0)
{
Mode = MODE_HIGH_CURRENT;
Test = MeasureInductance(&Time1, Mode);
}
}
}
if (Test != 3) Test = 0; /* all measurements failed */
/*
* calculate inductance
*/
if (Test == 3) /* valid measurement */
{
/*
* resistance
*/
/* total resistance (in 0.1 Ohms) */
R_total = RescaleValue(Resistor->Value, Resistor->Scale, -1); /* R_L */
#ifdef R_MULTIOFFSET
uint8_t n;
/* get index number for probe pair */
n = GetOffsetIndex(Probes.ID_1, Probes.ID_2);
Factor = NV.RZero[n]; /* probe leads (0.01 Ohms) */
#else
Factor = NV.RZero; /* probe leads (0.01 Ohms) */
#endif
Factor += 5; /* for rounding */
Factor /= 10; /* scale to 0.1 Ohms */
R_total += NV.RiH + NV.RiL + Factor;
Factor = NV.RiL; /* shunt resistance (in 0.1 Ohms) */
if (Mode & MODE_LOW_CURRENT) /* low current measurement mode */
{
/* add R_l */
R_total += (R_LOW * 10);
Factor += (R_LOW * 10);
/*
* compensation offset for U_ref
* - positive/larger offset -> lower L
* - negative/lower offset -> higher L
*/
#if CPU_FREQ == 8000000
/* 8 MHz */
if (Time1 < 6000) /* < 6µs / < 18mH */
{
Offset = 38;
}
else if (Time1 < 9500) /* 6-9.5µs / 18-27mH */
{
Offset = -10;
}
else /* > 9.5µs / > 27mH */
{
Offset = 20;
}
#endif
#if (CPU_FREQ == 16000000) || (CPU_FREQ == 20000000)
/* 16 & 20 MHz */
if (Time1 < 6000) /* < 6µs / < 18mH */
{
Offset = 80;
}
else if (Time1 < 12500) /* 6-12.5µs / 18-33mH */
{
Offset = 45;
}
else /* > 12.5µs / > 33mH */
{
Offset = 55;
}
#endif
}
else /* high current measurement mode */
{
/*
* compensation offset for U_ref
* - positive/larger offset -> lower L
* - negative/lower offset -> higher L
*/
Temp = (uint16_t)Time1; /* time < 50µs expected */
#if CPU_FREQ == 8000000
/* 8 MHz */
if (Temp < 1500) /* < 1.5µs / < 100µH */
{
Offset = -10;
}
else if (Temp < 5000) /* 1.5-5µs / 100-330µH */
{
Offset = -5;
}
else /* > 5µs / > 330µH */
{
Offset = -50;
}
#endif
#if CPU_FREQ == 16000000
/* 16 MHz */
if (Temp < 1500) /* < 1.5µs / < 100µH */
{
Offset = 10;
}
else if (Temp < 5000) /* 1.5-5µs / 100-330µH */
{
Offset = -5;
}
else /* > 5µs / > 330µH */
{
Offset = -50;
}
#endif
#if CPU_FREQ == 20000000
/* 20 MHz */
if (Temp < 1500) /* < 1.5µs / < 100µH */
{
Offset = 10;
}
else if (Temp < 5000) /* 1.5-5µs / 100-330µH */
{
Offset = -20;
}
else /* > 5µs / > 330µH */
{
Offset = -70;
}
#endif
}
/*
* ratio and factor
* - ratio = ((U_ref * R_total) / (5V * R_shunt)) * 10^3
*/
/* calculate ratio */
Value = Cfg.Bandgap + NV.CompOffset; /* = U_ref (in mV) */
Value += Offset; /* +/- offset */
Value *= R_total; /* * R_total (in 0.1 Ohms) */
Value /= Factor; /* / R_shunt (in 0.1 Ohms) */
Value /= 5; /* / 5000mV, * 10^3 */
/* get ratio based factor */
Factor = GetFactor((uint16_t)Value, TABLE_INDUCTOR);
/*
* calculate inductance
* L = t_stop * R_total * factor
*/
Scale = -9; /* nH by default */
Value = Time1; /* t_stop (in ns) */
while (Value > 100000) /* re-scale to prevent overflow */
{
Value += 5; /* for automagic rounding */
Value /= 10; /* scale down by 10^1 */
Scale++; /* increase exponent by 1 */
}
Value *= Factor; /* * factor (in 10^-3) */
while (Value > 100000) /* re-scale to prevent overflow */
{
Value += 5; /* for automagic rounding */
Value /= 10; /* scale down by 10^1 */
Scale++; /* increase exponent by 1 */
}
Value *= R_total; /* * R_total (in 0.1 Ohms) */
Value /= 10000; /* /10 for 1 Ohms, /1000 for factor */
/* update data */
Inductor.Scale = Scale;
Inductor.Value = Value;
Test = 1; /* signal success */
}
return Test;
}
/* ************************************************************************
* clean-up of local constants
* ************************************************************************ */
/* local defines */
#undef MODE_LOW_CURRENT
#undef MODE_HIGH_CURRENT
#undef MODE_DELAYED_START
/* source management */
#undef INDUCTOR_C
#endif
/* ************************************************************************
* EOF
* ************************************************************************ */