-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcli.py
157 lines (129 loc) · 5.9 KB
/
cli.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import argparse
import torch
from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN
from llava.conversation import conv_templates, SeparatorStyle
from llava.model.builder import load_pretrained_model
from llava.utils import disable_torch_init
from llava.mm_utils import process_images, tokenizer_image_token, get_model_name_from_path
import requests, json
from PIL import Image
from io import BytesIO
from transformers import TextStreamer
from detector import Detector
from retriever import ClipRetriever
def load_image(image_file):
if image_file.startswith('http://') or image_file.startswith('https://'):
response = requests.get(image_file)
image = Image.open(BytesIO(response.content)).convert('RGB')
else:
image = Image.open(image_file).convert('RGB')
return image
def main(args):
# Model
disable_torch_init()
model_name = get_model_name_from_path(args.model_path)
tokenizer, model, image_processor, context_len = load_pretrained_model(args.model_path, args.model_base, model_name, args.load_8bit, args.load_4bit, device=args.device)
if "phi" in model_name.lower():
conv_mode = "phi3_instruct"
elif "v1" in model_name.lower():
conv_mode = "llava_v1"
else:
conv_mode = "llava_v0"
if args.conv_mode is not None and conv_mode != args.conv_mode:
print('[WARNING] the auto inferred conversation mode is {}, while `--conv-mode` is {}, using {}'.format(conv_mode, args.conv_mode, args.conv_mode))
else:
args.conv_mode = conv_mode
conv = conv_templates[args.conv_mode].copy()
if "mpt" in model_name.lower():
roles = ('user', 'assistant')
else:
roles = conv.roles
if args.retrieval:
detector = Detector()
with open(f"{args.database}/database.json", "r") as f:
database = json.load(f)
# Set interested classes
all_category = []
for concept in database["concept_dict"]:
cat = database["concept_dict"][concept]["category"]
if cat not in all_category:
all_category.append(cat)
detector.model.set_classes(all_category)
if args.index_path is None:
retriever = ClipRetriever(data_dir = args.database, index_path = args.index_path, create_index = True)
else:
retriever = ClipRetriever(data_dir = args.database, index_path = args.index_path, create_index = False)
image = load_image(args.image_file)
image_sizes = [image.size]
images = [image]
while True:
try:
inp = input(f"{roles[0]}: ")
except EOFError:
inp = ""
if not inp:
print("exit...")
break
print(f"{roles[1]}: ", end="")
if image is not None:
# first message
if args.retrieval:
crops = detector.detect_and_crop(image)
extra_info, rag_images = retriever.retrieve(database, inp, queries = crops, topK = args.topK)
for i, ret_path in enumerate(rag_images):
img = load_image(ret_path)
image_sizes.append(img.size)
images.append(img)
inp = DEFAULT_IMAGE_TOKEN + f"\n[{extra_info}]" + inp
else:
inp = DEFAULT_IMAGE_TOKEN + "\n" + inp
conv.append_message(conv.roles[0], inp)
image = None
else:
# later messages
conv.append_message(conv.roles[0], inp)
conv.append_message(conv.roles[1], None)
# Similar operation in model_worker.py
image_tensor = process_images(images, image_processor, model.config)
if type(image_tensor) is list:
image_tensor = [image.to(model.device, dtype=torch.float16) for image in image_tensor]
else:
image_tensor = image_tensor.to(model.device, dtype=torch.float16)
prompt = conv.get_prompt()
# print(prompt)
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).to(model.device)
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
keywords = [stop_str]
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
with torch.inference_mode():
output_ids = model.generate(
input_ids,
images=image_tensor,
image_sizes=image_sizes,
do_sample=True if args.temperature > 0 else False,
temperature=args.temperature,
max_new_tokens=args.max_new_tokens,
streamer=streamer,
use_cache=True)
outputs = tokenizer.decode(output_ids[0]).strip()
conv.messages[-1][-1] = outputs
if args.debug:
print("\n", {"prompt": prompt, "outputs": outputs}, "\n")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--model-path", type=str, default="liuhaotian/llava-v1.5-13b")
parser.add_argument("--model-base", type=str, default=None)
parser.add_argument("--image-file", type=str, required=True)
parser.add_argument("--device", type=str, default="cuda")
parser.add_argument("--conv-mode", type=str, default=None)
parser.add_argument("--temperature", type=float, default=0.2)
parser.add_argument("--max-new-tokens", type=int, default=512)
parser.add_argument("--load-8bit", action="store_true")
parser.add_argument("--load-4bit", action="store_true")
parser.add_argument("--debug", action="store_true")
parser.add_argument("--retrieval", action="store_true")
parser.add_argument("--database", type=str, default=None)
parser.add_argument("--index_path", type=str, default=None)
parser.add_argument("--topK", type=int, default=2)
args = parser.parse_args()
main(args)