-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgrounding_neg.py
188 lines (154 loc) · 7.74 KB
/
grounding_neg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import torch
import os
import inflect
import argparse
from GroundingDINO.groundingdino.util.inference import load_model, load_image, predict
from PIL import Image
import numpy as np
from torchvision.ops import box_convert
import json
import torch.nn as nn
import torch.nn.functional as F
import clip
# 定义全局变量
device = "cuda" if torch.cuda.is_available() else "cpu"
# 阈值设置
BOX_THRESHOLD = 0.02
TEXT_THRESHOLD = 0.02
BOX_THRESHOLD_class = 0.01
TEXT_THRESHOLD_class = 0.01
# 初始化inflect引擎
p = inflect.engine()
# 将单词转换为单数形式的函数
def to_singular(word):
singular_word = p.singular_noun(word)
return singular_word if singular_word else word
# 定义ClipClassifier类
class ClipClassifier(nn.Module):
def __init__(self, clip_model, embed_dim=512):
super(ClipClassifier, self).__init__()
self.clip_model = clip_model.to(device)
for param in self.clip_model.parameters():
param.requires_grad = False
self.fc = nn.Linear(clip_model.visual.output_dim, embed_dim)
self.classifier = nn.Linear(embed_dim, 2) # 二分类
def forward(self, images):
with torch.no_grad():
image_features = self.clip_model.encode_image(images).float().to(device)
x = self.fc(image_features)
x = F.relu(x)
logits = self.classifier(x)
return logits
# 初始化和加载二分类模型
clip_model, preprocess = clip.load("ViT-B/32", device)
binary_classifier = ClipClassifier(clip_model).to(device)
# 加载保存的权重
model_weights_path = './data/out/classify/best_model.pth'
binary_classifier.load_state_dict(torch.load(model_weights_path, map_location=device))
# 确认模型已经被设置为评估模式
binary_classifier.eval()
# 计算两个边界框的IoU
def calculate_iou(box1, box2):
x1, y1, w1, h1 = box1
x2, y2, w2, h2 = box2
intersection_x1 = max(x1, x2)
intersection_y1 = max(y1, y2)
intersection_x2 = min(x1 + w1, x2 + w2)
intersection_y2 = min(y1 + h1, y2 + h2)
intersection_area = max(intersection_x2 - intersection_x1, 0) * max(intersection_y2 - intersection_y1, 0)
box1_area = w1 * h1
box2_area = w2 * h2
union_area = box1_area + box2_area - intersection_area
iou = intersection_area / union_area if union_area > 0 else 0
return iou
# 检查patch是否有效
def is_valid_patch(patch, binary_classifier, preprocess, device):
if patch.size[0] <= 0 or patch.size[1] <= 0:
return False
patch_tensor = preprocess(patch).unsqueeze(0).to(device)
with torch.no_grad():
logits = binary_classifier(patch_tensor)
probabilities = torch.softmax(logits, dim=1)
prob_label_1 = probabilities[0, 1]
return prob_label_1.item() > 0.8
# 处理图片的主函数
def process_images(text_file_path, dataset_path, model, preprocess, binary_classifier, output_folder, device='cpu'):
boxes_dict = {}
with open(text_file_path, 'r') as f:
for line in f:
image_name, class_name = line.strip().split('\t')
print(f"Processing image: {image_name}")
text_prompt = class_name + ' .'
object_prompt = "object ."
image_path = os.path.join(dataset_path, image_name)
img = Image.open(image_path).convert("RGB")
image_source, image = load_image(image_path)
h, w, _ = image_source.shape
boxes_object, logits_object, _ = predict(model, image, object_prompt, BOX_THRESHOLD, TEXT_THRESHOLD)
boxes_class, logits_class, _ = predict(model, image, text_prompt, BOX_THRESHOLD_class, TEXT_THRESHOLD_class)
patches_object = box_convert(boxes_object, in_fmt="cxcywh", out_fmt="xyxy")
patches_class = box_convert(boxes_class, in_fmt="cxcywh", out_fmt="xyxy")
top_patches = []
iou_matrix = np.zeros((len(boxes_object), len(boxes_class)))
for j, box_class in enumerate(patches_class):
box_object_class = box_class.cpu().numpy() * np.array([w, h, w, h], dtype=np.float32)
x1_, y1_, x2_, y2_ = box_object_class.astype(int)
x1_, y1_, x2_, y2_ = max(x1_, 0), max(y1_, 0), min(x2_, w), min(y2_, h)
patch_ = img.crop((x1_, y1_, x2_, y2_))
if x2_ - x1_ > w / 2 or y2_ - y1_ > h / 2 or not is_valid_patch(patch_, binary_classifier, preprocess, device):
print(f"Skipping patch at box {box_class}")
continue
for i, box_object in enumerate(patches_object):
iou_matrix[i][j] = calculate_iou(box_object.cpu().numpy(), box_class.cpu().numpy())
for i, box_object in enumerate(patches_object):
max_iou = np.max(iou_matrix[i])
if max_iou < 0.5:
box_object = box_object.cpu().numpy() * np.array([w, h, w, h], dtype=np.float32)
x1, y1, x2, y2 = box_object.astype(int)
x1, y1, x2, y2 = max(x1, 0), max(y1, 0), min(x2, w), min(y2, h)
patch = img.crop((x1, y1, x2, y2))
if patch.size == (0, 0) or not is_valid_patch(patch, binary_classifier, preprocess, device) or x2 - x1 > w / 2 or y2 - y1 > h / 2 or y2 - y1 < 5 or x2 - x1 < 5:
print(f"Skipping patch at box {box_object}")
continue
patch_logits = logits_object[i]
top_patches.append((i, patch_logits.item()))
top_patches.sort(key=lambda x: x[1], reverse=True)
top_3_indices = [patch[0] for patch in top_patches[:3]]
while len(top_3_indices) < 3:
if len(top_3_indices) > 0:
top_3_indices.append(top_3_indices[-1])
else:
default_box = torch.tensor([0,0,20/w,20/h]).unsqueeze(0)
patches_object = torch.cat((patches_object, default_box.to(boxes_object.device)), dim=0)
top_3_indices.append(len(patches_object) - 1)
boxes_dict[image_name] = [patches_object[idx].cpu().numpy().tolist() * np.array([w, h, w, h], dtype=np.float32) for idx in top_3_indices]
return boxes_dict
def main(args):
# 设置固定的默认路径
model_config = "GroundingDINO/groundingdino/config/GroundingDINO_SwinT_OGC.py"
model_weights = "GroundingDINO/weights/groundingdino_swint_ogc.pth"
# 根据root_path设置路径
text_file_path = os.path.join(args.root_path, "ImageClasses_FSC147.txt")
dataset_path = os.path.join(args.root_path, "images_384_VarV2")
input_json_path = os.path.join(args.root_path, "annotation_FSC147_384.json")
output_json_path = os.path.join(args.root_path, "annotation_FSC147_neg.json")
output_folder = os.path.join(args.root_path, "annotated_images_n")
os.makedirs(output_folder, exist_ok=True)
# 加载GroundingDINO模型
model = load_model(model_config, model_weights, device=device)
# 处理图片并生成边界框
boxes_dict = process_images(text_file_path, dataset_path, model, preprocess, binary_classifier, output_folder, device=device)
# 更新JSON文件
with open(input_json_path, 'r') as f:
data = json.load(f)
for image_name, boxes in boxes_dict.items():
if image_name in data:
new_boxes = [[[x1, y1], [x1, y2], [x2, y2], [x2, y1]] for x1, y1, x2, y2 in boxes]
data[image_name]["box_examples_coordinates"] = new_boxes
with open(output_json_path, 'w') as f:
json.dump(data, f, indent=4)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Image Processing Script")
parser.add_argument("--root_path", type=str, required=True, help="Root path to the dataset and output files")
args = parser.parse_args()
main(args)