-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgrounding_pos.py
141 lines (118 loc) · 5.68 KB
/
grounding_pos.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import torch
import os
import clip
import inflect
import argparse
from torchvision.ops import box_convert
from GroundingDINO.groundingdino.util.inference import load_model, load_image, predict
from PIL import Image
import numpy as np
import json
import torch.nn as nn
import torch.nn.functional as F
# 定义全局变量
device = "cuda" if torch.cuda.is_available() else "cpu"
BOX_THRESHOLD = 0.05
TEXT_THRESHOLD = 0.05
# 初始化inflect引擎
p = inflect.engine()
# 定义 ClipClassifier 类
class ClipClassifier(nn.Module):
def __init__(self, clip_model, embed_dim=512):
super(ClipClassifier, self).__init__()
self.clip_model = clip_model.to(device)
for param in self.clip_model.parameters():
param.requires_grad = False
self.fc = nn.Linear(clip_model.visual.output_dim, embed_dim)
self.classifier = nn.Linear(embed_dim, 2) # 二分类
def forward(self, images):
with torch.no_grad():
image_features = self.clip_model.encode_image(images).float().to(device)
x = self.fc(image_features)
x = F.relu(x)
logits = self.classifier(x)
return logits
# 加载 CLIP 模型
clip_model, preprocess = clip.load("ViT-B/32", device)
clip_model.eval()
# 初始化并加载二分类模型
binary_classifier = ClipClassifier(clip_model).to(device)
model_weights_path = './data/out/classify/best_model.pth'
binary_classifier.load_state_dict(torch.load(model_weights_path, map_location=device))
binary_classifier.eval()
# 判断 patch 是否有效
def is_valid_patch(patch, binary_classifier, preprocess, device):
if patch.size[0] <= 0 or patch.size[1] <= 0:
return False
patch_tensor = preprocess(patch).unsqueeze(0).to(device)
with torch.no_grad():
logits = binary_classifier(patch_tensor)
probabilities = torch.softmax(logits, dim=1)
prob_label_1 = probabilities[0, 1]
return prob_label_1.item() > 0.8
# 处理图片的主函数
def process_images(text_file_path, dataset_path, model, preprocess, clip_model, output_folder, device='cpu'):
boxes_dict = {}
with open(text_file_path, 'r') as f:
for line in f:
image_name, class_name = line.strip().split('\t')
print(f"Processing image: {image_name}")
text_prompt = class_name + ' .'
image_path = os.path.join(dataset_path, image_name)
img = Image.open(image_path).convert("RGB")
image_source, image = load_image(image_path)
h, w, _ = image_source.shape
boxes, logits, _ = predict(model, image, text_prompt, BOX_THRESHOLD, TEXT_THRESHOLD)
patches = box_convert(boxes, in_fmt="cxcywh", out_fmt="xyxy")
top_patches = []
for i, (box, logit) in enumerate(zip(patches, logits)):
box = box.cpu().numpy() * np.array([w, h, w, h], dtype=np.float32)
x1, y1, x2, y2 = box.astype(int)
x1, y1, x2, y2 = max(x1, 0), max(y1, 0), min(x2, w), min(y2, h)
patch = img.crop((x1, y1, x2, y2))
if patch.size == (0, 0) or not is_valid_patch(patch, binary_classifier, preprocess, device) or x2 - x1 > w / 2 or y2 - y1 > h / 2 or y2 - y1 < 5 or x2 - x1 < 5:
print(f"Skipping patch due to binary classifier at box {box}")
continue
top_patches.append((i, logit))
top_patches.sort(key=lambda x: x[1], reverse=True)
top_3_indices = [patch[0] for patch in top_patches[:3]]
# 确保每张图像都有三个边界框
while len(top_3_indices) < 3:
if len(top_3_indices) > 0:
top_3_indices.append(top_3_indices[-1])
else:
default_box = torch.tensor([0, 0, 20 / w, 20 / h]).unsqueeze(0)
patches = torch.cat((patches, default_box.to(boxes.device)), dim=0)
top_3_indices.append(len(patches) - 1)
boxes_dict[image_name] = [patches[idx].cpu().numpy().tolist() * np.array([w, h, w, h], dtype=np.float32) for idx in top_3_indices]
return boxes_dict
# 主函数
def main(args):
# 设置固定的默认路径
model_config = "GroundingDINO/groundingdino/config/GroundingDINO_SwinT_OGC.py"
model_weights = "GroundingDINO/weights/groundingdino_swint_ogc.pth"
output_folder = os.path.join(args.root_path, "annotated_images")
# 根据 root_path 设置路径
text_file_path = os.path.join(args.root_path, "ImageClasses_FSC147.txt")
dataset_path = os.path.join(args.root_path, "images_384_VarV2")
input_json_path = os.path.join(args.root_path, "annotation_FSC147_384_old.json")
output_json_path = os.path.join(args.root_path, "annotation_FSC147_pos.json")
os.makedirs(output_folder, exist_ok=True)
# 加载 GroundingDINO 模型
model = load_model(model_config, model_weights, device=device)
# 处理图片并生成边界框
boxes_dict = process_images(text_file_path, dataset_path, model, preprocess, clip_model, output_folder, device=device)
# 更新 JSON 文件
with open(input_json_path, 'r') as f:
data = json.load(f)
for image_name, boxes in boxes_dict.items():
if image_name in data:
new_boxes = [[[x1, y1], [x1, y2], [x2, y2], [x2, y1]] for x1, y1, x2, y2 in boxes]
data[image_name]["box_examples_coordinates"] = new_boxes
with open(output_json_path, 'w') as f:
json.dump(data, f, indent=4)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Image Processing Script")
parser.add_argument("--root_path", type=str, required=True, help="Root path to the dataset and output files")
args = parser.parse_args()
main(args)