-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathntools_elec_saveAnatomical.m
259 lines (205 loc) · 9.1 KB
/
ntools_elec_saveAnatomical.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
function [anatomical_text, EOI] = ntools_elec_saveAnatomical(subj,hemi,elec_text,elec_bin)
% paint the electrodes onto subject's pial surface and output the
% anatomical regions (in percentage) where each electrode locates
%
% Usage: ntools_elec_saveAnatomical(subj,hemi,elec_bin,elec_text)
% default cortical parcellation: ?h.aparc.annot
%
% Input:
% subj: subject ID in SUBJECTS_DIR
% hemi: hemisphere (lh rh or depth)
% elec_text: subject electrode location file in T1 space
% elec_bin: subject electrode nifti image (optional)
%
% Output:
% cortical_text: anatomical regions of each electrode in percentage
%
% created by Hugh Wang, 3/11/2015, Xiuyuan.Wang@nyumc.org
%
% modified by Hugh Wang, 5/21/2015
% make elec_bin optional to avoid wrong indexing when input text is hemi
% splited
%
% to do:
% add hemi info the electrode label
%% read in the text file and parse the G/S/D electrodes
fprintf('\n%s\n',subj);
if ~exist('elec_bin','var'), elec_bin = []; end % if no binary image input, just map the cortical electrodes
fid = fopen(elec_text);
elec_all = textscan(fid,'%s %f %f %f %s');
elec_cell = [elec_all{1},num2cell(elec_all{2}),num2cell(elec_all{3}),num2cell(elec_all{4})];
% Separate Grid, Strip and Depth electrodes
if isempty(char(elec_all{5}(:)))
% g = strncmpi('G',elec_cell(:,1),1);
d = strncmpi('D',elec_cell(:,1),1);
else
% g = strncmpi('G',elec_all{5},1);
d = strncmpi('D',elec_all{5},1);
end
elec_gs = elec_cell(~d,:);
elec_depth = elec_cell(d,:);
%% process with G/S
PathName = fileparts(elec_text);if isempty(PathName), PathName = '.'; end
cfg = [];
cfg.outdir = [PathName '/labels'];
if ~exist(cfg.outdir,'dir'), mkdir(cfg.outdir); end
hippo_elec = cell(1);
entorhinal_elec = cell(1);
% lateral_frontal_elec = cell(1);
insula_elec = cell(1);
amygdala_elec = cell(1);
if strcmpi(hemi,'depth'), elec_gs = []; end % for both hemi, jump to depth part
if ~isempty(elec_gs)
% load pial surface
[surf] = fs_load_subj(subj,hemi,'pial');
[surf] = fs_calc_triarea(surf);
surf.coords = surf.vertices;
PathName = fileparts(elec_text); if isempty(PathName), PathName = '.'; end
cfg = [];
cfg.subject = subj;
cfg.surf= surf;
cfg.elec_names = elec_gs(:,1);
cfg.elec_coords = cell2mat(elec_gs(:,2:4));
cfg.hemi = hemi;
cfg.outdir = [PathName '/labels'];
cfg.fsavg = 0;
annotfile = ntools_elec_saveAnnot(cfg);
%% loading ?h.aparc.annot and get the region percentage of each elec
% read annotation
[~, elec_label, elec_colortable] = fs_read_annotation(annotfile);
[~, label, colortable] = fs_read_annotation(fullfile(getenv('SUBJECTS_DIR'),subj,'label',[hemi,'.aparc.split_STG_MTG.annot']));
%%
for i=1:size(elec_gs,1)
note = [];
% if only one electrode available, use the 2nd because it was
% overwritten in the annotation file
if size(elec_gs,1)==1
elec_nbrs = elec_label==elec_colortable.table(2,5);
else
elec_nbrs = elec_label==elec_colortable.table(i,5);
end
% didn't find neighbours in the label, happens when the electrode share
% the same location with others
if sum(elec_nbrs)==0
elec_gs(i,5) = {[]};
continue;
end
total_area = surf.vertex_area(elec_nbrs);
aparc_table_idx = label(elec_nbrs);
% remove 0 index
aparc_table_idx = aparc_table_idx(aparc_table_idx>0);
if isempty(aparc_table_idx), continue; end
aparc_idx_uniq = unique(aparc_table_idx);
for j=1:length(aparc_idx_uniq)
aparc_region = colortable.struct_names{colortable.table(:,5)==aparc_idx_uniq(j)};
aparc_area = sum(total_area(aparc_table_idx==aparc_idx_uniq(j)));
aparc_area_ratio = aparc_area/sum(total_area)*100;
note = [note, sprintf('%0.2f%% %s ',aparc_area_ratio,aparc_region)];
end
if sum(strcmp('parahippocampal',strsplit(note,' ')))
hippo_elec(end+1) = elec_gs(i,1);
end
if sum(strcmp('entorhinal',strsplit(note,' ')))
entorhinal_elec(end+1) = elec_gs(i,1);
end
% if sum(strcmp('caudalmiddlefrontal',strsplit(note,' '))) || ...
% sum(strcmp('rostralmiddlefrontal',strsplit(note,' '))) || ...
% sum(strcmp('parsopercularis',strsplit(note,' '))) || ...
% sum(strcmp('parstriangularis',strsplit(note,' '))) || ...
% sum(strcmp('parsorbitalis',strsplit(note,' '))) || ...
% sum(strcmp('lateralorbitofrontal',strsplit(note,' '))) || ...
% sum(strcmp('frontalpole',strsplit(note,' ')))
% lateral_frontal_elec(end+1) = elec_gs(i,1);
% end
if sum(strcmp('insula',strsplit(note,' ')))
insula_elec(end+1) = elec_gs(i,1);
end
elec_gs(i,5) = cellstr(note);
clear elec_nbrs total_area aparc*
end
end
%% process depth electrodes
if ~isempty(elec_depth) && ~isempty(elec_bin)
hdr = ntools_elec_load_nifti(elec_bin);
depth_row = find(d);
% check the orientation of elec_bin
[~,msg] = unix(sprintf('mri_info %s',elec_bin));
orientation = regexp(msg,'Orientation\s+:\s+\w+','match');
if ~isempty(orientation)
orientation = strtrim(orientation{1}(end-3:end));
if ~strcmpi(orientation,'RAS') && ~strcmpi(orientation,'LAS')
cont = input(sprintf('The orientation of the elec_bin is %s, this is unusual. Continue? [y/n]: ',...
orientation),'s');
if strcmpi(cont,'n'), return; end
end
else
disp('orientation is not available. please check elec_bin image');
return;
end
% convert aseg
aseg_mgz = fullfile(getenv('SUBJECTS_DIR'),subj,'mri','aparc+aseg.mgz');
aseg_nii = fullfile(cfg.outdir,'aparc+aseg.nii.gz');
[status,msg] = unix(sprintf('mri_convert --out_orientation %s %s %s',orientation,aseg_mgz,aseg_nii));
if status, disp(msg); return; end
aseg = ntools_elec_load_nifti(aseg_nii);
[seg_idx, seg_name] = xlsread(fullfile(fileparts(which('ntools_elec')),'aparc_aseg_idx_name.xlsx'));
for k=1:length(depth_row)
note = [];
seg_num = aseg.vol(hdr.vol==depth_row(k));
% continue if seg_num is empty
if isempty(seg_num), elec_depth(k,5) = {[]}; continue; end
unique_seg_num = unique(seg_num);
for m=1:length(unique_seg_num)
seg_num_vox = sum(seg_num==unique_seg_num(m));
note = [note, sprintf('%.2f%% %s ',100*seg_num_vox/27, seg_name{seg_idx==unique_seg_num(m)})];
end
% find out hippocampus depth elecs
if sum(strcmp('Left-Hippocampus',strsplit(note,' '))) || ...
sum(strcmp('Right-Hippocampus',strsplit(note,' ')))
hippo_elec(end+1) = elec_depth(k,1);
end
% find out amygdala depth elecs
if sum(strcmp('Left-Amygdala',strsplit(note,' '))) || ...
sum(strcmp('Right-Amygdala',strsplit(note,' ')))
amygdala_elec(end+1) = elec_depth(k,1);
end
% find out insula depth elecs
if sum(strcmp('ctx-lh-insula',strsplit(note,' '))) || ...
sum(strcmp('ctx-rh-insula',strsplit(note,' ')))
insula_elec(end+1) = elec_depth(k,1);
end
elec_depth(k,5) = cellstr(note);
end
else
elec_depth = [];
end
%% save into text file
hippo_elec{1} = length(hippo_elec)-1;
entorhinal_elec{1} = length(entorhinal_elec)-1;
% lateral_frontal_elec{1} = length(lateral_frontal_elec)-1;
insula_elec{1} = length(insula_elec)-1;
amygdala_elec{1} = length(amygdala_elec)-1;
anatomical_text = fullfile(PathName,[subj,'_T1_',hemi,'_split_STG_MTG_AnatomicalRegions.txt']);
elec_cell = [elec_gs;elec_depth];
ntools_elec_savetxt(anatomical_text,elec_cell);
fid = fopen(anatomical_text,'a');
fprintf(fid,'\n');
fprintf(fid,'%% Total number of electrodes %d\n',size(elec_cell,1));
fprintf(fid,'%% Number of hippocampus electrodes %d\n',hippo_elec{1});
fprintf(fid,'%% ');
for ll = 2:length(hippo_elec), fprintf(fid,'%s ',hippo_elec{ll}); end; fprintf(fid,'\n');
fprintf(fid,'%% Number of entorhinal cortex electrodes %d\n',entorhinal_elec{1});
fprintf(fid,'%% ');
for ll = 2:length(entorhinal_elec), fprintf(fid,'%s ',entorhinal_elec{ll}); end; fprintf(fid,'\n');
% fprintf(fid,'%% Number of lateral frontal electrodes %d\n',lateral_frontal_elec{1});
% fprintf(fid,'%% ');
% for ll = 2:length(lateral_frontal_elec), fprintf(fid,'%s ',lateral_frontal_elec{ll}); end; fprintf(fid,'\n');
fprintf(fid,'%% Number of insula electrodes %d\n',insula_elec{1});
fprintf(fid,'%% ');
for ll = 2:length(insula_elec), fprintf(fid,'%s ',insula_elec{ll}); end; fprintf(fid,'\n');
fprintf(fid,'%% Number of amygdala electrodes %d\n',amygdala_elec{1});
fprintf(fid,'%% ');
for ll = 2:length(amygdala_elec), fprintf(fid,'%s ',amygdala_elec{ll}); end; fprintf(fid,'\n');
fclose(fid);
% EOI = [length(elec_cell),hippo_elec{1},entorhinal_elec{1},lateral_frontal_elec{1}];
EOI = [length(elec_cell),hippo_elec{1},entorhinal_elec{1},insula_elec{1},amygdala_elec{1}];