-
Notifications
You must be signed in to change notification settings - Fork 125
/
image_adaptive_lut_train_unpaired.py
311 lines (258 loc) · 11.3 KB
/
image_adaptive_lut_train_unpaired.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
import argparse
import os
import numpy as np
import math
import itertools
import time
import datetime
import sys
import torchvision.transforms as transforms
from torchvision.utils import save_image
from torch.utils.data import DataLoader
from torchvision import datasets
from torch.autograd import Variable
import torch.autograd as autograd
from models_x import *
from datasets import *
import torch.nn as nn
import torch.nn.functional as F
import torch
parser = argparse.ArgumentParser()
parser.add_argument("--epoch", type=int, default=0, help="epoch to start training from, 0 starts from scratch, >0 starts from saved checkpoints")
parser.add_argument("--n_epochs", type=int, default=800, help="total number of epochs of training")
parser.add_argument("--dataset_name", type=str, default="fiveK", help="name of the dataset")
parser.add_argument("--input_color_space", type=str, default="sRGB", help="input color space: sRGB or XYZ")
parser.add_argument("--batch_size", type=int, default=1, help="size of the batches")
parser.add_argument("--lr", type=float, default=0.0002, help="adam: learning rate")
parser.add_argument("--b1", type=float, default=0.9, help="adam: decay of first order momentum of gradient")
parser.add_argument("--b2", type=float, default=0.999, help="adam: decay of first order momentum of gradient")
parser.add_argument("--lambda_pixel", type=float, default=1000, help="content preservation weight: 1000 for sRGB input, 10 for XYZ input")
parser.add_argument("--lambda_gp", type=float, default=10, help="gradient penalty weight in wgan-gp")
parser.add_argument("--lambda_smooth", type=float, default=1e-4, help="smooth regularization")
parser.add_argument("--lambda_monotonicity", type=float, default=10.0, help="monotonicity regularization: 10 for sRGB input, 100 for XYZ input (slightly better)")
parser.add_argument("--n_cpu", type=int, default=1, help="number of cpu threads to use during batch generation")
parser.add_argument("--n_critic", type=int, default=1, help="number of training steps for discriminator per iter")
parser.add_argument("--output_dir", type=str, default="LUTs/unpaired/fiveK_480p_sm_1e-4_mn_10_pixel_1000", help="path to save model")
parser.add_argument("--checkpoint_interval", type=int, default=1, help="interval between model checkpoints")
opt = parser.parse_args()
opt.output_dir = opt.output_dir + '_' + opt.input_color_space
print(opt)
os.makedirs("saved_models/%s" % opt.output_dir, exist_ok=True)
cuda = True if torch.cuda.is_available() else False
Tensor = torch.cuda.FloatTensor if cuda else torch.FloatTensor
# Loss functions
criterion_GAN = torch.nn.MSELoss()
criterion_pixelwise = torch.nn.MSELoss()
# Initialize generator and discriminator
LUT0 = Generator3DLUT_identity()
LUT1 = Generator3DLUT_zero()
LUT2 = Generator3DLUT_zero()
#LUT3 = Generator3DLUT_zero()
#LUT4 = Generator3DLUT_zero()
classifier = Classifier_unpaired()
discriminator = Discriminator()
TV3 = TV_3D()
if cuda:
LUT0 = LUT0.cuda()
LUT1 = LUT1.cuda()
LUT2 = LUT2.cuda()
#LUT3 = LUT3.cuda()
#LUT4 = LUT4.cuda()
classifier = classifier.cuda()
criterion_GAN.cuda()
criterion_pixelwise.cuda()
discriminator = discriminator.cuda()
TV3.cuda()
TV3.weight_r = TV3.weight_r.type(Tensor)
TV3.weight_g = TV3.weight_g.type(Tensor)
TV3.weight_b = TV3.weight_b.type(Tensor)
if opt.epoch != 0:
# Load pretrained models
LUTs = torch.load("saved_models/%s/LUTs_%d.pth" % (opt.output_dir, opt.epoch))
LUT0.load_state_dict(LUTs["0"])
LUT1.load_state_dict(LUTs["1"])
LUT2.load_state_dict(LUTs["2"])
#LUT3.load_state_dict(LUTs["3"])
#LUT4.load_state_dict(LUTs["4"])
classifier.load_state_dict(torch.load("saved_models/%s/classifier_%d.pth" % (opt.output_dir, opt.epoch)))
else:
# Initialize weights
classifier.apply(weights_init_normal_classifier)
torch.nn.init.constant_(classifier.model[12].bias.data, 1.0)
discriminator.apply(weights_init_normal_classifier)
# Optimizers
optimizer_G = torch.optim.Adam(itertools.chain(classifier.parameters(), LUT0.parameters(),LUT1.parameters(),LUT2.parameters()), lr=opt.lr, betas=(opt.b1, opt.b2)) #,LUT3.parameters(),LUT4.parameters()
optimizer_D = torch.optim.Adam(discriminator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))
if opt.input_color_space == 'sRGB':
dataloader = DataLoader(
ImageDataset_sRGB_unpaired("../data/%s" % opt.dataset_name, mode="train"),
batch_size=opt.batch_size,
shuffle=True,
num_workers=opt.n_cpu,
)
psnr_dataloader = DataLoader(
ImageDataset_sRGB_unpaired("../data/%s" % opt.dataset_name, mode="test"),
batch_size=1,
shuffle=False,
num_workers=1,
)
elif opt.input_color_space == 'XYZ':
dataloader = DataLoader(
ImageDataset_XYZ_unpaired("../data/%s" % opt.dataset_name, mode="train"),
batch_size=opt.batch_size,
shuffle=True,
num_workers=opt.n_cpu,
)
psnr_dataloader = DataLoader(
ImageDataset_XYZ_unpaired("../data/%s" % opt.dataset_name, mode="test"),
batch_size=1,
shuffle=False,
num_workers=1,
)
def calculate_psnr():
classifier.eval()
avg_psnr = 0
for i, batch in enumerate(psnr_dataloader):
real_A = Variable(batch["A_input"].type(Tensor))
real_B = Variable(batch["A_exptC"].type(Tensor))
fake_B, weights_norm = generator(real_A)
fake_B = torch.round(fake_B*255)
real_B = torch.round(real_B*255)
mse = criterion_pixelwise(fake_B, real_B)
psnr = 10 * math.log10(255.0 * 255.0 / mse.item())
avg_psnr += psnr
return avg_psnr/ len(psnr_dataloader)
def visualize_result(epoch):
"""Saves a generated sample from the validation set"""
os.makedirs("images/LUTs/" +str(epoch), exist_ok=True)
for i, batch in enumerate(psnr_dataloader):
real_A = Variable(batch["A_input"].type(Tensor))
real_B = Variable(batch["A_exptC"].type(Tensor))
img_name = batch["input_name"]
fake_B, weights_norm = generator(real_A)
img_sample = torch.cat((real_A.data, fake_B.data, real_B.data), -1)
fake_B = torch.round(fake_B*255)
real_B = torch.round(real_B*255)
mse = criterion_pixelwise(fake_B, real_B)
psnr = 10 * math.log10(255.0 * 255.0 / mse.item())
save_image(img_sample, "images/LUTs/%s/%s.jpg" % (epoch, img_name[0]+'_'+str(psnr)[:5]), nrow=3, normalize=False)
def compute_gradient_penalty(D, real_samples, fake_samples):
"""Calculates the gradient penalty loss for WGAN GP"""
# Random weight term for interpolation between real and fake samples
alpha = Tensor(np.random.random((real_samples.size(0), 1, 1, 1)))
# Get random interpolation between real and fake samples
interpolates = (alpha * real_samples + ((1 - alpha) * fake_samples)).requires_grad_(True)
d_interpolates = D(interpolates)
fake = Variable(Tensor(real_samples.shape[0], 1, 1, 1).fill_(1.0), requires_grad=False)
# Get gradient w.r.t. interpolates
gradients = autograd.grad(
outputs=d_interpolates,
inputs=interpolates,
grad_outputs=fake,
create_graph=True,
retain_graph=True,
only_inputs=True,
)[0]
gradients = gradients.view(gradients.size(0), -1)
gradient_penalty = ((gradients.norm(2, dim=1) - 1) ** 2).mean()
return gradient_penalty
def generator(img):
pred = classifier(img).squeeze()
weights_norm = torch.mean(pred ** 2)
combine_A = pred[0] * LUT0(img) + pred[1] * LUT1(img) + pred[2] * LUT2(img) #+ pred[3] * LUT3(img) + pred[4] * LUT4(img)
return combine_A, weights_norm
# ----------
# Training
# ----------
avg_psnr = calculate_psnr()
print(avg_psnr)
prev_time = time.time()
max_psnr = 0
max_epoch = 0
for epoch in range(opt.epoch, opt.n_epochs):
loss_D_avg = 0
loss_G_avg = 0
loss_pixel_avg = 0
cnt = 0
psnr_avg = 0
classifier.train()
for i, batch in enumerate(dataloader):
# Model inputs
real_A = Variable(batch["A_input"].type(Tensor))
real_B = Variable(batch["B_exptC"].type(Tensor))
# ---------------------
# Train Discriminator
# ---------------------
optimizer_D.zero_grad()
fake_B, weights_norm = generator(real_A)
pred_real = discriminator(real_B)
pred_fake = discriminator(fake_B)
# Gradient penalty
gradient_penalty = compute_gradient_penalty(discriminator, real_B, fake_B)
# Total loss
loss_D = -torch.mean(pred_real) + torch.mean(pred_fake) + opt.lambda_gp * gradient_penalty
loss_D.backward()
optimizer_D.step()
loss_D_avg += (-torch.mean(pred_real) + torch.mean(pred_fake)) / 2
# ------------------
# Train Generators
# ------------------
if i % opt.n_critic == 0:
optimizer_G.zero_grad()
fake_B, weights_norm = generator(real_A)
pred_fake = discriminator(fake_B)
# Pixel-wise loss
loss_pixel = criterion_pixelwise(fake_B, real_A)
tv0, mn0 = TV3(LUT0)
tv1, mn1 = TV3(LUT1)
tv2, mn2 = TV3(LUT2)
#tv3, mn3 = TV3(LUT3)
#tv4, mn4 = TV3(LUT4)
tv_cons = tv0 + tv1 + tv2 #+ tv3 + tv4
mn_cons = mn0 + mn1 + mn2 #+ mn3 + mn4
loss_G = -torch.mean(pred_fake) + opt.lambda_pixel * loss_pixel + opt.lambda_smooth * (weights_norm + tv_cons) + opt.lambda_monotonicity * mn_cons
loss_G.backward()
optimizer_G.step()
cnt += 1
loss_G_avg += -torch.mean(pred_fake)
loss_pixel_avg += loss_pixel
psnr_avg += 10 * math.log10(1 / loss_pixel.item())
# --------------
# Log Progress
# --------------
# Determine approximate time left
batches_done = epoch * len(dataloader) + i
batches_left = opt.n_epochs * len(dataloader) - batches_done
time_left = datetime.timedelta(seconds=batches_left * (time.time() - prev_time))
prev_time = time.time()
# Print log
sys.stdout.write(
"\r[Epoch %d/%d] [Batch %d/%d] [D: %f, G: %f] [pixel: %f] [tv: %f, wnorm: %f, mn: %f] ETA: %s"
% (
epoch,
opt.n_epochs,
i,
len(dataloader),
loss_D_avg.item() / cnt,
loss_G_avg.item() / cnt,
loss_pixel_avg.item() / cnt,
tv_cons, weights_norm, mn_cons,
time_left,
)
)
# If at sample interval save image
avg_psnr = calculate_psnr()
if avg_psnr > max_psnr:
max_psnr = avg_psnr
max_epoch = epoch
sys.stdout.write(" [PSNR: %f] [max PSNR: %f, epoch: %d]\n"% (avg_psnr, max_psnr, max_epoch))
#if (epoch+1) % 10 == 0:
# visualize_result(epoch+1)
if epoch % opt.checkpoint_interval == 0:
# Save model checkpoints
LUTs = {"0": LUT0.state_dict(), "1": LUT1.state_dict(), "2": LUT2.state_dict()} #, "3": LUT3.state_dict(), "4": LUT4.state_dict()
torch.save(LUTs, "saved_models/%s/LUTs_%d.pth" % (opt.output_dir, epoch))
torch.save(classifier.state_dict(), "saved_models/%s/classifier_%d.pth" % (opt.output_dir, epoch))
file = open('saved_models/%s/result.txt' % opt.output_dir,'a')
file.write(" [PSNR: %f] [max PSNR: %f, epoch: %d]\n"% (avg_psnr, max_psnr, max_epoch))
file.close()