-
Notifications
You must be signed in to change notification settings - Fork 125
/
torchvision_x_functional.py
554 lines (423 loc) · 17.2 KB
/
torchvision_x_functional.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
import collections
import numbers
from functools import wraps
import cv2
import numpy as np
import torch
from PIL import Image
from scipy.ndimage.filters import gaussian_filter
__numpy_type_map = {
'float64': torch.DoubleTensor,
'float32': torch.FloatTensor,
'float16': torch.HalfTensor,
'int64': torch.LongTensor,
'int32': torch.IntTensor,
'int16': torch.ShortTensor,
'uint16': torch.ShortTensor,
'int8': torch.CharTensor,
'uint8': torch.ByteTensor,
}
'''image functional utils
'''
# NOTE: all the function should recive the ndarray like image, should be W x H x C or W x H
# 如果将所有输出的维度够搞成height,width,channel 那么可以不用to_tensor??, 不行
def preserve_channel_dim(func):
"""Preserve dummy channel dim."""
@wraps(func)
def wrapped_function(img, *args, **kwargs):
shape = img.shape
result = func(img, *args, **kwargs)
if len(shape) == 3 and shape[-1] == 1 and len(result.shape) == 2:
result = np.expand_dims(result, axis=-1)
return result
return wrapped_function
def _is_tensor_image(img):
return torch.is_tensor(img) and img.ndimension() == 3
def _is_numpy_image(img):
return isinstance(img, np.ndarray) and (img.ndim in {2, 3})
def to_tensor(img):
'''convert numpy.ndarray to torch tensor. \n
if the image is uint8 , it will be divided by 255;\n
if the image is uint16 , it will be divided by 65535;\n
if the image is float , it will not be divided, we suppose your image range should between [0~1] ;\n
Arguments:
img {numpy.ndarray} -- image to be converted to tensor.
'''
if not _is_numpy_image(img):
raise TypeError('data should be numpy ndarray. but got {}'.format(type(img)))
if img.ndim == 2:
img = img[:, :, None]
if img.dtype == np.uint8:
img = img.astype(np.float32)/255
elif img.dtype == np.uint16:
img = img.astype(np.float32)/65535
elif img.dtype in [np.float32, np.float64]:
img = img.astype(np.float32)/1
else:
raise TypeError('{} is not support'.format(img.dtype))
img = torch.from_numpy(img.transpose((2, 0, 1)))
return img
def to_pil_image(tensor):
# TODO
pass
def to_tiff_image(tensor):
# TODO
pass
def normalize(tensor, mean, std, inplace=False):
"""Normalize a tensor image with mean and standard deviation.
.. note::
This transform acts out of place by default, i.e., it does not mutates the input tensor.
See :class:`~torchsat.transforms.Normalize` for more details.
Args:
tensor (Tensor): Tensor image of size (C, H, W) to be normalized.
mean (sequence): Sequence of means for each channel.
std (sequence): Sequence of standard deviations for each channel.
Returns:
Tensor: Normalized Tensor image.
"""
if not _is_tensor_image(tensor):
raise TypeError('tensor is not a torch image.')
if not inplace:
tensor = tensor.clone()
mean = torch.as_tensor(mean, dtype=tensor.dtype, device=tensor.device)
std = torch.as_tensor(std, dtype=tensor.dtype, device=tensor.device)
tensor.sub_(mean[:, None, None]).div_(std[:, None, None])
return tensor
def noise(img, mode='gaussain', percent=0.02):
"""
TODO: Not good for uint16 data
"""
original_dtype = img.dtype
if mode == 'gaussian':
mean = 0
var = 0.1
sigma = var*0.5
if img.ndim == 2:
h, w = img.shape
gauss = np.random.normal(mean, sigma, (h, w))
else:
h, w, c = img.shape
gauss = np.random.normal(mean, sigma, (h, w, c))
if img.dtype not in [np.float32, np.float64]:
gauss = gauss * np.iinfo(img.dtype).max
img = np.clip(img.astype(np.float) + gauss, 0, np.iinfo(img.dtype).max)
else:
img = np.clip(img.astype(np.float) + gauss, 0, 1)
elif mode == 'salt':
print(img.dtype)
s_vs_p = 1
num_salt = np.ceil(percent * img.size * s_vs_p)
coords = tuple([np.random.randint(0, i - 1, int(num_salt)) for i in img.shape])
if img.dtype in [np.float32, np.float64]:
img[coords] = 1
else:
img[coords] = np.iinfo(img.dtype).max
print(img.dtype)
elif mode == 'pepper':
s_vs_p = 0
num_pepper = np.ceil(percent * img.size * (1. - s_vs_p))
coords = tuple([np.random.randint(0, i - 1, int(num_pepper)) for i in img.shape])
img[coords] = 0
elif mode == 's&p':
s_vs_p = 0.5
# Salt mode
num_salt = np.ceil(percent * img.size * s_vs_p)
coords = tuple([np.random.randint(0, i - 1, int(num_salt)) for i in img.shape])
if img.dtype in [np.float32, np.float64]:
img[coords] = 1
else:
img[coords] = np.iinfo(img.dtype).max
# Pepper mode
num_pepper = np.ceil(percent* img.size * (1. - s_vs_p))
coords = tuple([np.random.randint(0, i - 1, int(num_pepper)) for i in img.shape])
img[coords] = 0
else:
raise ValueError('not support mode for {}'.format(mode))
noisy = img.astype(original_dtype)
return noisy
def gaussian_blur(img, kernel_size):
# When sigma=0, it is computed as `sigma = 0.3*((ksize-1)*0.5 - 1) + 0.8`
return cv2.GaussianBlur(img, (kernel_size, kernel_size), sigmaX=0)
def adjust_brightness(img, value=0):
if img.dtype in [np.float, np.float32, np.float64, np.float128]:
dtype_min, dtype_max = 0, 1
dtype = np.float32
else:
dtype_min = np.iinfo(img.dtype).min
dtype_max = np.iinfo(img.dtype).max
dtype = np.iinfo(img.dtype)
result = np.clip(img.astype(np.float)+value, dtype_min, dtype_max).astype(dtype)
return result
def adjust_contrast(img, factor):
if img.dtype in [np.float, np.float32, np.float64, np.float128]:
dtype_min, dtype_max = 0, 1
dtype = np.float32
else:
dtype_min = np.iinfo(img.dtype).min
dtype_max = np.iinfo(img.dtype).max
dtype = np.iinfo(img.dtype)
result = np.clip(img.astype(np.float)*factor, dtype_min, dtype_max).astype(dtype)
return result
def adjust_saturation():
# TODO
pass
def adjust_hue():
# TODO
pass
def to_grayscale(img, output_channels=1):
"""convert input ndarray image to gray sacle image.
Arguments:
img {ndarray} -- the input ndarray image
Keyword Arguments:
output_channels {int} -- output gray image channel (default: {1})
Returns:
ndarray -- gray scale ndarray image
"""
if img.ndim == 2:
gray_img = img
elif img.shape[2] == 3:
gray_img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
else:
gray_img = np.mean(img, axis=2)
gray_img = gray_img.astype(img.dtype)
if output_channels != 1:
gray_img = np.tile(gray_img, (output_channels, 1, 1))
gray_img = np.transpose(gray_img, [1,2,0])
return gray_img
def shift(img, top, left):
(h, w) = img.shape[0:2]
matrix = np.float32([[1, 0, left], [0, 1, top]])
dst = cv2.warpAffine(img, matrix, (w, h))
return dst
def rotate(img, angle, center=None, scale=1.0):
(h, w) = img.shape[:2]
if center is None:
center = (w / 2, h / 2)
M = cv2.getRotationMatrix2D(center, angle, scale)
rotated = cv2.warpAffine(img, M, (w, h))
return rotated
def resize(img, size, interpolation=Image.BILINEAR):
'''resize the image
TODO: opencv resize 之后图像就成了0~1了
Arguments:
img {ndarray} -- the input ndarray image
size {int, iterable} -- the target size, if size is intger, width and height will be resized to same \
otherwise, the size should be tuple (height, width) or list [height, width]
Keyword Arguments:
interpolation {Image} -- the interpolation method (default: {Image.BILINEAR})
Raises:
TypeError -- img should be ndarray
ValueError -- size should be intger or iterable vaiable and length should be 2.
Returns:
img -- resize ndarray image
'''
if not _is_numpy_image(img):
raise TypeError('img shoud be ndarray image [w, h, c] or [w, h], but got {}'.format(type(img)))
if not (isinstance(size, int) or (isinstance(size, collections.Iterable) and len(size)==2)):
raise ValueError('size should be intger or iterable vaiable(length is 2), but got {}'.format(type(size)))
if isinstance(size, int):
height, width = (size, size)
else:
height, width = (size[0], size[1])
return cv2.resize(img, (width, height), interpolation=interpolation)
def pad(img, padding, fill=0, padding_mode='constant'):
if isinstance(padding, int):
pad_left = pad_right = pad_top = pad_bottom = padding
if isinstance(padding, collections.Iterable) and len(padding) == 2:
pad_left = pad_right = padding[0]
pad_bottom = pad_top = padding[1]
if isinstance(padding, collections.Iterable) and len(padding) == 4:
pad_left = padding[0]
pad_top = padding[1]
pad_right = padding[2]
pad_bottom = padding[3]
if img.ndim == 2:
if padding_mode == 'constant':
img = np.pad(img, ((pad_top, pad_bottom), (pad_left, pad_right)), mode=padding_mode, constant_values=fill)
else:
img = np.pad(img, ((pad_top, pad_bottom), (pad_left, pad_right)), mode=padding_mode)
if img.ndim == 3:
if padding_mode == 'constant':
img = np.pad(img, ((pad_top, pad_bottom), (pad_left, pad_right), (0, 0)), mode=padding_mode, constant_values=fill)
else:
img = np.pad(img, ((pad_top, pad_bottom), (pad_left, pad_right), (0, 0)), mode=padding_mode)
return img
def crop(img, top, left, height, width):
'''crop image
Arguments:
img {ndarray} -- image to be croped
top {int} -- top size
left {int} -- left size
height {int} -- croped height
width {int} -- croped width
'''
if not _is_numpy_image(img):
raise TypeError('the input image should be numpy ndarray with dimension 2 or 3.'
'but got {}'.format(type(img))
)
if width<0 or height<0 or left <0 or height<0:
raise ValueError('the input left, top, width, height should be greater than 0'
'but got left={}, top={} width={} height={}'.format(left, top, width, height)
)
if img.ndim == 2:
img_height, img_width = img.shape
else:
img_height, img_width, _ = img.shape
if (left+width) > img_width or (top+height) > img_height:
raise ValueError('the input crop width and height should be small or \
equal to image width and height. ')
if img.ndim == 2:
return img[top:(top+height), left:(left+width)]
elif img.ndim == 3:
return img[top:(top+height), left:(left+width), :]
def center_crop(img, output_size):
'''crop image
Arguments:
img {ndarray} -- input image
output_size {number or sequence} -- the output image size. if sequence, should be [h, w]
Raises:
ValueError -- the input image is large than original image.
Returns:
ndarray image -- return croped ndarray image.
'''
if img.ndim == 2:
img_height, img_width = img.shape
else:
img_height, img_width, _ = img.shape
if isinstance(output_size, numbers.Number):
output_size = (int(output_size), int(output_size))
if output_size[0] > img_height or output_size[1] > img_width:
raise ValueError('the output_size should not greater than image size, but got {}'.format(output_size))
target_height, target_width = output_size
top = int(round((img_height - target_height)/2))
left = int(round((img_width - target_width)/2))
return crop(img, top, left, target_height, target_width)
def resized_crop(img, top, left, height, width, size, interpolation=Image.BILINEAR):
img = crop(img, top, left, height, width)
img = resize(img, size, interpolation)
return img
def vflip(img):
return cv2.flip(img, 0)
def hflip(img):
return cv2.flip(img, 1)
def flip(img, flip_code):
return cv2.flip(img, flip_code)
def elastic_transform(image, alpha, sigma, alpha_affine, interpolation=cv2.INTER_LINEAR,
border_mode=cv2.BORDER_REFLECT_101, random_state=None, approximate=False):
"""Elastic deformation of images as described in [Simard2003]_ (with modifications).
Based on https://gist.github.com/erniejunior/601cdf56d2b424757de5
.. [Simard2003] Simard, Steinkraus and Platt, "Best Practices for
Convolutional Neural Networks applied to Visual Document Analysis", in
Proc. of the International Conference on Document Analysis and
Recognition, 2003.
"""
if random_state is None:
random_state = np.random.RandomState(1234)
height, width = image.shape[:2]
# Random affine
center_square = np.float32((height, width)) // 2
square_size = min((height, width)) // 3
alpha = float(alpha)
sigma = float(sigma)
alpha_affine = float(alpha_affine)
pts1 = np.float32([center_square + square_size, [center_square[0] + square_size, center_square[1] - square_size],
center_square - square_size])
pts2 = pts1 + random_state.uniform(-alpha_affine, alpha_affine, size=pts1.shape).astype(np.float32)
matrix = cv2.getAffineTransform(pts1, pts2)
image = cv2.warpAffine(image, matrix, (width, height), flags=interpolation, borderMode=border_mode)
if approximate:
# Approximate computation smooth displacement map with a large enough kernel.
# On large images (512+) this is approximately 2X times faster
dx = (random_state.rand(height, width).astype(np.float32) * 2 - 1)
cv2.GaussianBlur(dx, (17, 17), sigma, dst=dx)
dx *= alpha
dy = (random_state.rand(height, width).astype(np.float32) * 2 - 1)
cv2.GaussianBlur(dy, (17, 17), sigma, dst=dy)
dy *= alpha
else:
dx = np.float32(gaussian_filter((random_state.rand(height, width) * 2 - 1), sigma) * alpha)
dy = np.float32(gaussian_filter((random_state.rand(height, width) * 2 - 1), sigma) * alpha)
x, y = np.meshgrid(np.arange(width), np.arange(height))
mapx = np.float32(x + dx)
mapy = np.float32(y + dy)
return cv2.remap(image, mapx, mapy, interpolation, borderMode=border_mode)
def bbox_shift(bboxes, top, left):
pass
def bbox_vflip(bboxes, img_height):
"""vertical flip the bboxes
...........
. .
. .
>...........<
. .
. .
...........
Args:
bbox (ndarray): bbox ndarray [box_nums, 4]
flip_code (int, optional): [description]. Defaults to 0.
"""
flipped = bboxes.copy()
flipped[...,1::2] = img_height - bboxes[...,1::2]
flipped = flipped[..., [0, 3, 2, 1]]
return flipped
def bbox_hflip(bboxes, img_width):
"""horizontal flip the bboxes
^
.............
. . .
. . .
. . .
. . .
.............
^
Args:
bbox (ndarray): bbox ndarray [box_nums, 4]
flip_code (int, optional): [description]. Defaults to 0.
"""
flipped = bboxes.copy()
flipped[..., 0::2] = img_width - bboxes[...,0::2]
flipped = flipped[..., [2, 1, 0, 3]]
return flipped
def bbox_resize(bboxes, img_size, target_size):
"""resize the bbox
Args:
bboxes (ndarray): bbox ndarray [box_nums, 4]
img_size (tuple): the image height and width
target_size (int, or tuple): the target bbox size.
Int or Tuple, if tuple the shape should be (height, width)
"""
if isinstance(target_size, numbers.Number):
target_size = (target_size, target_size)
ratio_height = target_size[0]/img_size[0]
ratio_width = target_size[1]/img_size[1]
return bboxes[...,]*[ratio_width,ratio_height,ratio_width,ratio_height]
def bbox_crop(bboxes, top, left, height, width):
'''crop bbox
Arguments:
img {ndarray} -- image to be croped
top {int} -- top size
left {int} -- left size
height {int} -- croped height
width {int} -- croped width
'''
croped_bboxes = bboxes.copy()
right = width + left
bottom = height + top
croped_bboxes[..., 0::2] = bboxes[..., 0::2].clip(left, right) - left
croped_bboxes[..., 1::2] = bboxes[..., 1::2].clip(top, bottom) - top
return croped_bboxes
def bbox_pad(bboxes, padding):
if isinstance(padding, int):
pad_left = pad_right = pad_top = pad_bottom = padding
if isinstance(padding, collections.Iterable) and len(padding) == 2:
pad_left = pad_right = padding[0]
pad_bottom = pad_top = padding[1]
if isinstance(padding, collections.Iterable) and len(padding) == 4:
pad_left = padding[0]
pad_top = padding[1]
pad_right = padding[2]
pad_bottom = padding[3]
pad_bboxes = bboxes.copy()
pad_bboxes[..., 0::2] = bboxes[..., 0::2] + pad_left
pad_bboxes[..., 1::2] = bboxes[..., 1::2] + pad_top
return pad_bboxes