-
Notifications
You must be signed in to change notification settings - Fork 5
/
model_image.py
165 lines (114 loc) · 5.71 KB
/
model_image.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
from utils import resize2d
import torch
import numpy as np
from torch.cuda import init
import torch.nn as nn
import torchvision.models as models
import torch.nn.functional as F
from Inception import Inception
import random
import config
from PIL import Image
device = torch.device(config.DEVICE)
class Encoder(nn.Module):
def __init__(self):
super(Encoder, self).__init__()
self.inception = Inception()
self.inception.fc = nn.Linear(2048, 1024)
self.inception.lastconv = nn.Conv2d(3, 2, kernel_size=3)
self.inception.fc1 = nn.Linear(1024, 300)
def forward(self, x):
x = self.inception(x)
x = x.view(-1, 64, 2048)
x = self.inception.fc(x)
x = self.inception.fc1(x)
return x
class Attention(nn.Module):
def __init__(self, encoder_dim, decoder_dim, attention_dim):
super(Attention, self).__init__()
self.encoder_dim = encoder_dim
self.encoder_att = nn.Linear(encoder_dim, attention_dim)
self.decoder_att = nn.Linear(decoder_dim, attention_dim)
self.full_att = nn.Linear(attention_dim, 1)
self.tanh = nn.Tanh()
self.softmax = nn.Softmax(dim=1) # softmax layer to calculate weights
def forward(self, encoder_out, decoder_hidden):
att1 = self.encoder_att(encoder_out) # (batch_size, num_pixels, attention_dim)
att2 = self.decoder_att(decoder_hidden).squeeze(0) # (batch_size, attention_dim)
att = self.full_att(self.tanh(att1 + att2.unsqueeze(1))).squeeze(2) # (batch_size, num_pixels)
alpha = self.softmax(att) # (batch_size, num_pixels)
# att1 al posto di encoder_out, perché serve passare da 600 a 300
# Applicare invece linear successivamente ad attention_w_encoding?
attention_weighted_encoding = (att1 * alpha.unsqueeze(2)).sum(dim=1) # (batch_size, encoder_dim)
return attention_weighted_encoding, alpha
class DecoderRNN(nn.Module):
def __init__(self, input_size, hidden_size, num_layers = 1):
super(DecoderRNN, self).__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.num_layers = num_layers
self.gru = nn.GRU(input_size = input_size + 1, hidden_size = hidden_size,
num_layers = num_layers, batch_first=True)
self.linear = nn.Linear(hidden_size, 1)
def forward(self, x_input, decoder_hidden):
gru_out, self.hidden = self.gru(x_input, decoder_hidden)
output = self.linear(gru_out)
return output, self.hidden
class EncoderDecoder(nn.Module):
def __init__(self, attention_dim, image_feature_size, hidden_size, encoder, decoder, out_len = 12, use_teacher_forcing = False):
super().__init__()
self.teacher_forcing_ratio = config.TF_RATE
self.use_teacher_forcing = use_teacher_forcing
self.out_len = out_len
self.encoder = encoder
self.decoder = decoder
self.image_feature_size = image_feature_size
self.hidden_size = hidden_size
self.gate_linear = nn.Linear(hidden_size, image_feature_size)
self.attention = Attention(hidden_size, hidden_size, attention_dim)
self.sigmoid = nn.Sigmoid()
def forward(self, input_batch, exogeneous_params, target=None, img_feature=None):
if target is not None:
target = target.t()
batch_size = input_batch.size(0)
if img_feature is None:
inception_feat = self.encoder(input_batch)
else:
inception_feat = img_feature
# Creating first decoder_hidden_state = 0
decoder_hidden = torch.zeros(1, batch_size, self.hidden_size).to(device)
# Initializing predictions vector
outputs = torch.zeros(self.out_len, batch_size, 1)
# Initializing first prediction
decoder_output = torch.zeros(batch_size, 1, 1).to(device)
# List of alphas, for attention check
attn_list = []
for t in range(self.out_len):
# Attention
attention_weighted_encoding, alpha = self.attention(inception_feat, decoder_hidden)
# Saving alpha (for visualization purpose)
attn_list.append(alpha)
# add Linear
gate = self.sigmoid(self.gate_linear(decoder_hidden))
attention_weighted_encoding = gate * attention_weighted_encoding
attention_weighted_encoding = attention_weighted_encoding.transpose(0,1)
# Reshape to (batch_size, 1, input_size)
attention_weighted_encoding = attention_weighted_encoding.sum(1)
attention_weighted_encoding = attention_weighted_encoding.view(-1, 1, self.image_feature_size)
x_input = [attention_weighted_encoding, decoder_output]
if config.USE_EXOG:
x_input.append(exogeneous_params.unsqueeze(1))
# Concatenating last predicition to attention_weighted_encoding + attributes + exogeneous(optional)
x_input = torch.cat(x_input, dim=2)
# GRU
decoder_output, decoder_hidden = self.decoder(x_input, decoder_hidden)
outputs[t] = decoder_output.squeeze(1)
# Setting to zero negative outs
#outputs[t] = torch.clamp(outputs[t], min=0)
# Teacher forcing
teach_forcing = True if random.random() < self.teacher_forcing_ratio else False
if self.use_teacher_forcing and teach_forcing and target is not None:
decoder_output = target[t].unsqueeze(1).unsqueeze(2)
# Scambio le due dimensioni per avere corrispondenza con il target
outputs = outputs.transpose(0,1)
return outputs.squeeze(), attn_list