-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path1D_pulse_demo.py
250 lines (206 loc) · 9.63 KB
/
1D_pulse_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
import argparse
import os
import pandas as pd
import scipy.io
import torch
import yaml
import tqdm
from collections import OrderedDict
from accelerate import Accelerator
import matplotlib.pyplot as plt
import numpy as np
from datetime import datetime
import torch.nn.functional as F
#Local library
from models.SpatialTimeConvertor import spatial_time_convertor_real, spatial_time_convertor_imag
from utils.bloch_v_faster_gradient_step import fBlochsim_v_fast
def plot_output(designed_rf,Predict_Profile, excitation, epoch, batch_idx, nvox):
frequency = np.linspace(-4096*8, 4096*8, nvox)
time = np.linspace(0,0.01*designed_rf.size(1), designed_rf.size(1))
plt.figure(figsize=(12, 8))
plt.subplot(2, 2, 1)
designed_rf_r = designed_rf[0, :, 0].detach().squeeze().cpu().numpy()
designed_rf_i = designed_rf[0, :, 1].detach().squeeze().cpu().numpy()
plt.plot(time, np.abs(designed_rf_r+1j*designed_rf_i), color='red', label='Designed RF amplitude')
plt.yticks(np.arange(0, 710, 100))
plt.xlabel(f'Time [ms]')
plt.ylabel('Amplitude [Hz]')
plt.legend()
plt.subplot(2, 2, 2)
plt.plot(time, np.angle(designed_rf_r+1j*designed_rf_i, deg=True), color='red', label='Designed RF phase')
plt.yticks(np.arange(-181, 180, 60))
plt.xlabel(f'Time [ms]')
plt.ylabel('Phase [deg]')
plt.legend()
plt.subplot(2, 1, 2)
plt.plot(frequency, np.abs(Predict_Profile.detach().cpu().squeeze().numpy()[:nvox] + 1j*Predict_Profile.detach().cpu().squeeze().numpy()[nvox:2*nvox]), color='red',
label='GPS Profile', linestyle='--')
plt.plot(frequency, np.abs(excitation.detach().cpu().squeeze().numpy()[:nvox] + 1j*excitation.detach().cpu().squeeze().numpy()[nvox:2*nvox]), color='blue', label='Target Profile',
alpha=0.5)
plt.xlabel('[Hz]')
plt.ylabel('|M$_{xy}$| [a.u.] ')
plt.legend()
plt.tight_layout()
fig_save_path = f'{log_path}/{epoch}_{batch_idx}_{F.cosine_similarity(Predict_Profile.reshape([1, 3, -1]),excitation.reshape([1, 3, -1], 1)).mean().detach().item()}.png'
plt.savefig(fig_save_path, format='png')
print(f'result saved in {fig_save_path}')
plt.close()
mat_save_path = fig_save_path.replace('png','mat')
save_dict = {
'Designed_RF': designed_rf_r+1j*designed_rf_i,
'Target_profile': excitation.detach().cpu().squeeze().numpy(),
'Predict_profile': Predict_Profile.detach().cpu().squeeze().numpy()
}
scipy.io.savemat(mat_save_path, save_dict)
def train_single_epoch(args,
spatial_time_convertor_real,
spatial_time_convertor_imag,
optimizer_real,
optimizer_imag,
epoch
):
#turn on training mode
spatial_time_convertor_real.train()
spatial_time_convertor_imag.train()
train_losses = 0.
#define the bloch simulator
n_points = args.n_points
nvox = args.nvox
dt = args.dt
bloch = fBlochsim_v_fast(duration=n_points, nvox=nvox, dt=dt, f=args.f)
#load the target profile
excitation = scipy.io.loadmat(args.exp_path)
mx = torch.tensor(excitation['mxy'].real).permute(1,0)
my = torch.tensor(excitation['mxy'].imag).permute(1,0)
mz = torch.tensor(excitation['mz']).permute(1,0)
excitation = torch.cat([mx,my,mz], dim=1).to(device).to(torch.float32)
#initial magnetization
Mx = torch.zeros(int(nvox))
Mz = torch.ones(int(nvox))
My = torch.sqrt(1 - Mx ** 2 - Mz ** 2)
M_0 = torch.cat([Mx, My, Mz], dim=0).unsqueeze(0).to(device)
stop_flag = 0
best_loss = 1e10
for mini_batch in tqdm.tqdm(range(args.max_epochs)):
if stop_flag > 20:
break
# RF prediction
predict_rf_real = spatial_time_convertor_real(excitation)
predict_rf_imag = spatial_time_convertor_imag(excitation)
# rescale to b1_max
if args.b1_max > 0:
magnitude = torch.sqrt(predict_rf_real ** 2 + predict_rf_imag ** 2)
b1_max = torch.max(magnitude)
predict_rf_real = (predict_rf_real / b1_max) * args.b1_max
predict_rf_imag = (predict_rf_imag / b1_max) * args.b1_max
#Bloch simulation
rf_t = torch.cat([(predict_rf_real).unsqueeze(-1), (predict_rf_imag).unsqueeze(-1)], dim=-1)
rf_t = rf_t[:,:args.n_points,:]
predict_profile = bloch(rf_t[:, :, 0], rf_t[:, :, 1], M_0)
loss = F.mse_loss(predict_profile, excitation.detach())
cos_sim = F.cosine_similarity(predict_profile.detach().reshape([1, 3, -1]),excitation.detach().reshape([1, 3, -1], 1)).mean().item()
#backpropogation and weights updating
optimizer_real.zero_grad()
optimizer_imag.zero_grad()
loss.backward()
optimizer_real.step()
optimizer_imag.step()
train_losses += loss.detach().item()
imaging_flag = 0
designed_rf = rf_t.detach()
Predict_Profile = bloch(designed_rf[:, :, 0], designed_rf[:, :, 1], M_0.detach())
plot_output(
designed_rf=designed_rf,
Predict_Profile=Predict_Profile,
excitation=excitation,
epoch=epoch,
batch_idx=mini_batch,
nvox=int(nvox),
)
torch.save(spatial_time_convertor_real.state_dict(),
os.path.join('test_log', args.taskname,
f'convertor_epoch_real.pth'))
torch.save(spatial_time_convertor_imag.state_dict(),
os.path.join('test_log', args.taskname,
f'convertor_epoch_imag.pth'))
if train_losses / (mini_batch + 1) < best_loss:
imaging_flag += 1
stop_flag = 0
best_loss = train_losses / (mini_batch + 1)
else:
stop_flag += 1
print(f'Epoch: {epoch} | Step: {mini_batch} | Actor Loss: {train_losses/(mini_batch+1)} | stop flag {stop_flag} ')
log['time'].append(datetime.now())
log['epoch'].append(epoch)
log['batch'].append(mini_batch)
log['actor_loss'].append(train_losses/(mini_batch+1))
log['cos_sim'].append(cos_sim)
pd.DataFrame(log).to_csv(log_path + '/log.csv', index=False)
if cos_sim == 1:
torch.save(spatial_time_convertor_real.state_dict(),
os.path.join('test_log', args.taskname,
f'convertor_epoch_real_last.pth'))
torch.save(spatial_time_convertor_imag.state_dict(),
os.path.join('test_log', args.taskname,
f'convertor_epoch_imag_last.pth'))
return 1
return 0
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='1D selective RF Pulse Design')
parser.add_argument('--converter_ckp', default=None, help='checkpoint directory')
parser.add_argument('--phase', type=str, default='test')
parser.add_argument('--lr', type=float, default=5e-4)
parser.add_argument('--max_epochs', type=int, default=500)
parser.add_argument('--exp_path', default='data_loader/exc_tbw_6p6_pw_2p56ms_d1_0p015_d2_0p015_SLR_ex_ls_excitation_profile_2048_conj.mat')
parser.add_argument('--notes', default='')
parser.add_argument('--n_points', type=int, default=256)
parser.add_argument('--dt', type=float, default=10e-6)
parser.add_argument('--nvox', type=int, default=2048)
parser.add_argument('--b1_max', type=int, default=0)
parser.add_argument('--f', type=float, default=1)
args = parser.parse_args()
args.taskname = f'1D_b1max{args.b1_max}_nvox{args.nvox}_lr{args.lr}_n_points{args.n_points}_dt{args.dt}_{datetime.now().strftime("%Y%m%d%H%M")}'
if args.notes is not None:
args.taskname += args.notes
print(args)
# make log dir
log_path = 'test' + '_log/' + args.taskname
os.makedirs(log_path, exist_ok=True)
# save setting file
with open(os.path.join(log_path,'config.yml'), 'w') as f:
yaml.dump(vars(args), f)
accelerator = Accelerator()
device = accelerator.device
#define the networks
spatial_time_convertor_real = spatial_time_convertor_real(int(args.nvox * 3), args.n_points).to(device)
spatial_time_convertor_imag = spatial_time_convertor_imag(int(args.nvox * 3), args.n_points).to(device)
#define optimizer
optimizer_real = torch.optim.AdamW(spatial_time_convertor_real.parameters(), lr=args.lr)
optimizer_imag = torch.optim.AdamW(spatial_time_convertor_imag.parameters(), lr=args.lr)
#load checkpoints if available
if args.converter_ckp is not None:
spatial_time_convertor_real.load_state_dict(
torch.load(args.converter_ckp + '/convertor_epoch_real.pth'))
spatial_time_convertor_imag.load_state_dict(
torch.load(args.converter_ckp + '/convertor_epoch_imag.pth'))
#define logger
log = OrderedDict([
('time', []),
('epoch', []),
('batch', []),
('actor_loss', []),
('cos_sim',[])
])
#main loop
for epoch in range(args.max_epochs):
epoch_avg_Bloch_loss_val = train_single_epoch(args=args,
spatial_time_convertor_real=spatial_time_convertor_real,
spatial_time_convertor_imag=spatial_time_convertor_imag,
optimizer_real=optimizer_real,
optimizer_imag=optimizer_imag,
epoch=epoch,
)
if epoch_avg_Bloch_loss_val == 1:
break
print('End!')
torch.cuda.empty_cache()