-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathoc_gan.py
320 lines (224 loc) · 10.3 KB
/
oc_gan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
'''
Author: Panpan Zheng
Date created: 2/15/2018
Python Version: 2.7
'''
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
from sklearn.metrics import classification_report, accuracy_score
from sklearn.preprocessing import MinMaxScaler
import os
from bg_utils import pull_away_loss, one_hot, xavier_init, sample_shuffle_spv, sample_shuffle_uspv, sample_Z, draw_trend
from bg_dataset import load_data, load_data_unbal
import sys
en_ae = int(sys.argv[1]) # en_ae == 1 for wiki dataset with autoencoding;
# en_ae == 2 for credit card dataset with autoencoding;
# en_ae == 3 for credit card dataset without autoencoding.
dra_tra_pro = int(sys.argv[2]) # dra_tra_pro == 1 for printing training trend, discr_probabiltiy, f1 and fm_loss;
# dra_tra_pro == 1 for printing training trend, discr_probabiltiy, f1 and fm_loss;
# print en_ae, dra_tra_pro
#
# exit(0)
# en_ae = 3 # 1 for wiki dataset with autoencoding; 2 for credit card dataset with autoencoding; 3 for credit card dataset without autoencoding.
# dra_tra_pro = False
if en_ae == 1:
mb_size = 100
dim_input = 200
elif en_ae == 2:
mb_size = 70
dim_input = 50
else:
mb_size = 70
dim_input = 30
D_dim = [dim_input, 100, 50, 2]
G_dim = [50, 100, dim_input]
Z_dim = G_dim[0]
# define placeholders for labeled-data, unlabeled-data, noise-data and target-data.
X_oc = tf.placeholder(tf.float32, shape=[None, dim_input])
Z = tf.placeholder(tf.float32, shape=[None, Z_dim])
X_tar = tf.placeholder(tf.float32, shape=[None, dim_input])
# X_val = tf.placeholder(tf.float32, shape=[None, dim_input])
# declare weights and biases of discriminator.
D_W1 = tf.Variable(xavier_init([D_dim[0], D_dim[1]]))
D_b1 = tf.Variable(tf.zeros(shape=[D_dim[1]]))
D_W2 = tf.Variable(xavier_init([D_dim[1], D_dim[2]]))
D_b2 = tf.Variable(tf.zeros(shape=[D_dim[2]]))
D_W3 = tf.Variable(xavier_init([D_dim[2], D_dim[3]]))
D_b3 = tf.Variable(tf.zeros(shape=[D_dim[3]]))
theta_D = [D_W1, D_W2, D_W3, D_b1, D_b2, D_b3]
# declare weights and biases of generator.
G_W1 = tf.Variable(xavier_init([G_dim[0], G_dim[1]]))
G_b1 = tf.Variable(tf.zeros(shape=[G_dim[1]]))
G_W2 = tf.Variable(xavier_init([G_dim[1], G_dim[2]]))
G_b2 = tf.Variable(tf.zeros(shape=[G_dim[2]]))
theta_G = [G_W1, G_W2, G_b1, G_b2]
# declare weights and biases of pre-train net for density estimation.
T_W1 = tf.Variable(xavier_init([D_dim[0], D_dim[1]]))
T_b1 = tf.Variable(tf.zeros(shape=[D_dim[1]]))
T_W2 = tf.Variable(xavier_init([D_dim[1], D_dim[2]]))
T_b2 = tf.Variable(tf.zeros(shape=[D_dim[2]]))
T_W3 = tf.Variable(xavier_init([D_dim[2], D_dim[3]]))
T_b3 = tf.Variable(tf.zeros(shape=[D_dim[3]]))
theta_T = [T_W1, T_W2, T_W3, T_b1, T_b2, T_b3]
def generator(z):
G_h1 = tf.nn.relu(tf.matmul(z, G_W1) + G_b1)
G_logit = tf.nn.tanh(tf.matmul(G_h1, G_W2) + G_b2)
return G_logit
def discriminator(x):
D_h1 = tf.nn.relu(tf.matmul(x, D_W1) + D_b1)
D_h2 = tf.nn.relu(tf.matmul(D_h1, D_W2) + D_b2)
D_logit = tf.matmul(D_h2, D_W3) + D_b3
D_prob = tf.nn.softmax(D_logit)
return D_prob, D_logit, D_h2
# pre-train net for density estimation.
def discriminator_tar(x):
T_h1 = tf.nn.relu(tf.matmul(x, T_W1) + T_b1)
T_h2 = tf.nn.relu(tf.matmul(T_h1, T_W2) + T_b2)
T_logit = tf.matmul(T_h2, T_W3) + T_b3
T_prob = tf.nn.softmax(T_logit)
return T_prob, T_logit, T_h2
D_prob_real, D_logit_real, D_h2_real = discriminator(X_oc)
G_sample = generator(Z)
D_prob_gen, D_logit_gen, D_h2_gen = discriminator(G_sample)
D_prob_tar, D_logit_tar, D_h2_tar = discriminator_tar(X_tar)
D_prob_tar_gen, D_logit_tar_gen, D_h2_tar_gen = discriminator_tar(G_sample)
# D_prob_val, _, D_h1_val = discriminator(X_val)
# disc. loss
y_real= tf.placeholder(tf.int32, shape=[None, D_dim[3]])
y_gen = tf.placeholder(tf.int32, shape=[None, D_dim[3]])
D_loss_real = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=D_logit_real,labels=y_real))
D_loss_gen = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=D_logit_gen, labels=y_gen))
ent_real_loss = -tf.reduce_mean(
tf.reduce_sum(
tf.multiply(D_prob_real, tf.log(D_prob_real)), 1
)
)
ent_gen_loss = -tf.reduce_mean(
tf.reduce_sum(
tf.multiply(D_prob_gen, tf.log(D_prob_gen)), 1
)
)
D_loss = D_loss_real + D_loss_gen + 1.85 * ent_real_loss
# gene. loss
pt_loss = pull_away_loss(D_h2_tar_gen)
y_tar= tf.placeholder(tf.int32, shape=[None, D_dim[3]])
T_loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=D_logit_tar, labels=y_tar))
tar_thrld = tf.divide(tf.reduce_max(D_prob_tar_gen[:,-1]) +
tf.reduce_min(D_prob_tar_gen[:,-1]), 2)
# tar_thrld = tf.reduce_mean(D_prob_tar_gen[:,-1])
indicator = tf.sign(
tf.subtract(D_prob_tar_gen[:,-1],
tar_thrld))
condition = tf.greater(tf.zeros_like(indicator), indicator)
mask_tar = tf.where(condition, tf.zeros_like(indicator), indicator)
G_ent_loss = tf.reduce_mean(tf.multiply(tf.log(D_prob_tar_gen[:,-1]), mask_tar))
# G_ent_loss = tf.reduce_mean(tf.log(D_prob_tar_gen[:,-1]))
fm_loss = tf.reduce_mean(
tf.sqrt(
tf.reduce_sum(
tf.square(D_logit_real - D_logit_gen), 1
)
)
)
G_loss = pt_loss + G_ent_loss + fm_loss
D_solver = tf.train.GradientDescentOptimizer(learning_rate=1e-3).minimize(D_loss, var_list=theta_D)
G_solver = tf.train.AdamOptimizer().minimize(G_loss, var_list=theta_G)
T_solver = tf.train.GradientDescentOptimizer(learning_rate=1e-3).minimize(T_loss, var_list=theta_T)
# Load data....
min_max_scaler = MinMaxScaler()
if en_ae == 1:
x_benign = min_max_scaler.fit_transform(np.load("./data/wiki/ben_hid_emd_4_50_8_200_r0.npy"))
x_vandal = min_max_scaler.transform(np.load("./data/wiki/val_hid_emd_4_50_8_200_r0.npy"))
elif en_ae == 2:
x_benign = min_max_scaler.fit_transform(np.load("./data/credit_card/ben_hid_repre_r2.npy"))
x_vandal = min_max_scaler.transform(np.load("./data/credit_card/van_hid_repre_r2.npy"))
else:
x_benign = min_max_scaler.fit_transform(np.load("./data/raw_credit_card/ben_raw_r0.npy"))
x_vandal = min_max_scaler.transform(np.load("./data/raw_credit_card/van_raw_r0.npy"))
#x_benign = min_max_scaler.fit_transform(np.load("./hidden_output/ben_hid_emd_4_50_8_200.npy"))
#x_vandal = min_max_scaler.transform(np.load("./hidden_output/val_hid_emd_4_50_8_200.npy"))
x_benign = sample_shuffle_uspv(x_benign)
x_vandal = sample_shuffle_uspv(x_vandal)
if en_ae == 1:
x_benign = x_benign[0:10000]
x_vandal = x_vandal[0:10000]
x_pre = x_benign[0:7000]
else:
x_pre = x_benign[0:700]
y_pre = np.zeros(len(x_pre))
y_pre = one_hot(y_pre, 2)
x_train = x_pre
y_real_mb = one_hot(np.zeros(mb_size), 2)
y_fake_mb = one_hot(np.ones(mb_size), 2)
if en_ae == 1:
x_test = x_benign[-3000:].tolist() + x_vandal[-3000:].tolist()
else:
x_test = x_benign[-490:].tolist() + x_vandal[-490:].tolist()
x_test = np.array(x_test)
y_test = np.zeros(len(x_test))
if en_ae == 1:
y_test[3000:] = 1
else:
y_test[490:] = 1
sess = tf.Session()
sess.run(tf.global_variables_initializer())
# pre-training for target distribution
_ = sess.run(T_solver,
feed_dict={
X_tar:x_pre,
y_tar:y_pre
})
q = np.divide(len(x_train), mb_size)
# n_epoch = 1
#
# while n_epoch:
d_ben_pro, d_fake_pro, fm_loss_coll = list(), list(), list()
f1_score = list()
d_val_pro = list()
if en_ae == 1:
n_round = 50
else:
n_round = 200
for n_epoch in range(n_round):
X_mb_oc = sample_shuffle_uspv(x_train)
for n_batch in range(q):
_, D_loss_curr, ent_real_curr = sess.run([D_solver, D_loss, ent_real_loss],
feed_dict={
X_oc: X_mb_oc[n_batch*mb_size:(n_batch+1)*mb_size],
Z: sample_Z(mb_size, Z_dim),
y_real: y_real_mb,
y_gen: y_fake_mb
})
_, G_loss_curr, fm_loss_curr = sess.run([G_solver, G_loss, fm_loss],
# _, G_loss_curr, fm_loss_, kld_ = sess.run([G_solver, G_loss, fm_loss, pt_loss + G_ent_loss],
feed_dict={Z: sample_Z(mb_size, Z_dim),
X_oc: X_mb_oc[n_batch*mb_size:(n_batch+1)*mb_size],
})
D_prob_real_, D_prob_gen_ = sess.run([D_prob_real, D_prob_gen],
feed_dict={X_oc: x_train,
Z: sample_Z(len(x_train), Z_dim)})
if en_ae == 1:
D_prob_vandal_ = sess.run(D_prob_real,
feed_dict={X_oc: x_vandal[0:7000]})
# feed_dict={X_oc:x_vandal[-490:]})
else:
D_prob_vandal_ = sess.run(D_prob_real,
#feed_dict={X_oc: x_vandal[0:7000]})
feed_dict={X_oc:x_vandal[-490:]})
d_ben_pro.append(np.mean(D_prob_real_[:, 0]))
d_fake_pro.append(np.mean(D_prob_gen_[:, 0]))
d_val_pro.append(np.mean(D_prob_vandal_[:, 0]))
fm_loss_coll.append(fm_loss_curr)
prob, _ = sess.run([D_prob_real, D_logit_real], feed_dict={X_oc: x_test})
y_pred = np.argmax(prob, axis=1)
conf_mat = classification_report(y_test, y_pred, target_names=['benign', 'vandal'], digits=4)
f1_score.append(float(filter(None, conf_mat.strip().split(" "))[12]))
# print conf_mat
if not dra_tra_pro:
acc = np.sum(y_pred == y_test)/float(len(y_pred))
print conf_mat
print "acc:%s"%acc
if dra_tra_pro:
draw_trend(d_ben_pro, d_fake_pro, d_val_pro, fm_loss_coll, f1_score)
exit(0)