-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsave_saliency.py
170 lines (143 loc) · 6.7 KB
/
save_saliency.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import csv
import os
from pathlib import Path
import numpy as np
import torch
import torch.nn.functional as F
from tqdm import tqdm
from utils import get_logger
logger = get_logger(__name__)
def restore_config_params(model, args):
# restores some of the model args to those of config args
model.args.saliency_mode = args.saliency_mode
model.args.saliency_source = args.saliency_source
model.args.saliency_method = args.saliency_method
model.args.save_saliency = args.save_saliency
model.args.ckpt_path = args.ckpt_path
return model
def calc_fine_grad(args, batch, logits, sal_input) -> list:
write_datas = []
logits = logits.reshape(batch['size'], -1)
num_choices = logits.shape[1]
if args.graph_encoder in ['rn', 'pathgen']:
num_nodes = sal_input[0].shape[1]
num_tuples = batch['num_tuples'].reshape(batch['size'], num_choices)
num_tuples += num_tuples == 0
sal_input[1].retain_grad()
for i in range(batch['size']):
for j in range(num_choices):
logits[i, j].backward(torch.ones_like(logits[i, j]), retain_graph=True)
cur_concept_saliency_scores = torch.sum(
sal_input[0].view(batch['size'], num_choices, num_nodes, -1)[i, j]
* sal_input[0].grad.view(batch['size'], num_choices, num_nodes, -1)[i, j], dim=-1
)[:num_tuples[i][j]].detach().cpu().numpy()
cur_rel_saliency_scores = torch.sum(
sal_input[1].view(batch['size'], num_choices, num_nodes, -1)[i, j]
* sal_input[1].grad.view(batch['size'], num_choices, num_nodes, -1)[i, j], dim=-1
)[:num_tuples[i][j]].detach().cpu().numpy()
cur_saliency_scores = cur_concept_saliency_scores + cur_rel_saliency_scores
# Normalize saliency scores
cur_saliency_scores = cur_saliency_scores / np.linalg.norm(cur_saliency_scores)
if batch['target'][i] != j:
cur_saliency_scores = -1 * cur_saliency_scores
cur_index = batch['index'][i].item()
cur_data = np.concatenate((np.array([cur_index, j]), cur_saliency_scores))
write_datas.append(cur_data)
else:
# MHGRN
num_nodes = sal_input.shape[1]
adj_len = batch['adj_len'].reshape(batch['size'], num_choices)
adj_len += adj_len == 0
for i in range(batch['size']):
for j in range(num_choices):
logits[i, j].backward(torch.ones_like(logits[i, j]), retain_graph=True)
cur_saliency_scores = torch.sum(
sal_input.view(batch['size'], num_choices, num_nodes, -1)[i, j]
* sal_input.grad.view(batch['size'], num_choices, num_nodes, -1)[i, j], dim=-1
)[:adj_len[i][j]].detach().cpu().numpy()
if batch['target'][i] != j:
cur_saliency_scores = -1 * cur_saliency_scores
# Normalize saliency scores
cur_saliency_scores = cur_saliency_scores / np.linalg.norm(cur_saliency_scores)
cur_index = batch['index'][i].item()
cur_data = np.concatenate((np.array([cur_index, j]), cur_saliency_scores))
write_datas.append(cur_data)
return write_datas
def save_saliency_scores(args, batch, logits, sal_input, saliency_path):
"""
write saliency scores to `saliency_path`
sal_input only in used if saliency_method = grad
supports coarse occl, fine {occl, grad}
"""
assert args.saliency_source == 'target'
assert args.saliency_mode in ['coarse', 'fine']
assert args.saliency_method in ['occl', 'grad']
write_datas = []
if args.saliency_mode == 'coarse':
assert args.saliency_method == 'occl', "only support coarse occl"
logits = logits.reshape(batch['size'], -1)
probs = F.softmax(logits, dim=-1)
for i in range(batch['size']):
cur_index = batch['index'][i].item()
cur_target = batch['target'][i].item()
cur_pred = [x.item() for x in probs[i]]
cur_data = [cur_index, cur_target] + cur_pred
write_datas.append(cur_data)
elif args.saliency_mode == 'fine':
if args.saliency_method == 'occl':
logits = logits.flatten()
for i in range(batch['size']):
cur_index = [batch['index'][i].item()]
cur_fine_occl_id = [x.item() for x in batch['fine_occl_id'][i]]
cur_target = [batch['target'][i].item()]
cur_pred = [logits[i].item()]
cur_data = cur_index + cur_fine_occl_id + cur_target + cur_pred
write_datas.append(cur_data)
elif args.saliency_method == 'grad':
write_datas = calc_fine_grad(args, batch, logits, sal_input)
with open(saliency_path, 'a') as f:
writer = csv.writer(f, delimiter=',')
for cur_data in write_datas:
writer.writerow(cur_data)
@torch.no_grad()
def save_saliency(dm, model, args):
# xx/checkpoints/yy
assert os.path.exists(args.ckpt_path)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# xx
args.root_dir = Path(args.ckpt_path).parent.parent.resolve()
# xx/saliency
saliency_dir = os.path.join(args.root_dir, 'saliency')
os.makedirs(saliency_dir, exist_ok=True)
dataloaders_dict = {
'train': dm.train_dataloader(shuffle=False),
'valid': dm.val_dataloader(),
'test': dm.test_dataloader(),
}
model = model.load_from_checkpoint(args.ckpt_path).to(device)
# gnn need args to be set to save-saliency to output sal_input
model = restore_config_params(model, args)
for split, dataloader in dataloaders_dict.items():
saliency_path = os.path.join(saliency_dir, 'sal_{}_{}_{}_{}.csv'.format(
# fine or coarse
args.saliency_mode,
# occl or grad
args.saliency_method,
# from QA model or Sal model
'target' if args.task == 'qa' else 'pred',
# data split
split)
)
# override if exist
if os.path.exists(saliency_path):
open(saliency_path, 'w').close()
logger.info(f'Saving saliency at {saliency_path}.')
with torch.set_grad_enabled(args.saliency_method == 'grad' and args.saliency_mode == 'fine'):
for batch in tqdm(dataloader, total=len(dataloader)):
"""
fine_occl_id (bsz, 3)
mhgrn
"""
batch = model.transfer_batch_to_device(batch)
logits, sal_input = model(batch)
save_saliency_scores(args, batch, logits, sal_input, saliency_path)