-
Notifications
You must be signed in to change notification settings - Fork 1
/
evaluation.py
658 lines (575 loc) · 26.9 KB
/
evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
#
# Copyright Qing Li (hello.qingli@gmail.com) 2018. All Rights Reserved.
#
# References: 1. KITTI odometry development kit: http://www.cvlibs.net/datasets/kitti/eval_odometry.php
# 2. A Geiger, P Lenz, R Urtasun. Are we ready for Autonomous Driving? The KITTI Vision Benchmark Suite. CVPR 2012.
#
import glob
import argparse
import os, os.path
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.backends.backend_pdf
import tools.transformations as tr
from tools.pose_evaluation_utils import quat_pose_to_mat
# choose other backend that not required GUI (Agg, Cairo, PS, PDF or SVG) when use matplotlib
plt.switch_backend('agg')
class kittiOdomEval():
def __init__(self, config):
assert os.path.exists(config.gt_dir), "Error of ground_truth pose path!"
gt_files = glob.glob(config.gt_dir + '/*.npy')
gt_files = [os.path.split(f)[1] for f in gt_files]
self.seqs_with_gt = [os.path.splitext(f)[0] for f in gt_files]
self.lengths = [100, 200, 300, 400, 500, 600, 700, 800]
self.num_lengths = len(self.lengths)
self.gt_dir = config.gt_dir
self.result_dir = config.result_dir
self.epoch = config.epoch
self.eval_seqs = []
# evalute all files in the folder
if config.eva_seqs == '*':
if not os.path.exists(self.result_dir):
print('File path error!')
exit()
if os.path.exists(self.result_dir + '/all_stats.txt'):
os.remove(self.result_dir + '/all_stats.txt')
files = glob.glob(self.result_dir + '/*.txt')
assert files, "There is not trajectory files in: {}".format(self.result_dir)
for f in files:
dirname, basename = os.path.split(f)
file_name = os.path.splitext(basename)[0]
self.eval_seqs.append(str(file_name))
else:
seqs = config.eva_seqs.split(',')
self.eval_seqs = [str(s) for s in seqs]
self.eval_seqs = [s[:-5] for s in self.eval_seqs] # xxxx_pred => xxxx
# # Ref: https://github.com/MichaelGrupp/evo/wiki/Plotting
# os.system("evo_config set plot_seaborn_style whitegrid \
# plot_linewidth 1.0 \
# plot_fontfamily sans-serif \
# plot_fontscale 1.0 \
# plot_figsize 10 10 \
# plot_export_format pdf")
def toCameraCoord(self, pose_mat):
'''
Convert the pose of lidar coordinate to camera coordinate
'''
R_C2L = np.array([[0, 0, 1, 0],
[-1, 0, 0, 0],
[0, -1, 0, 0],
[0, 0, 0, 1]])
inv_R_C2L = np.linalg.inv(R_C2L)
R = np.dot(inv_R_C2L, pose_mat)
rot = np.dot(R, R_C2L)
return rot
def loadPoses(self, file_name, toCameraCoord):
'''
Each line in the file should follow one of the following structures
(1) idx pose(3x4 matrix in terms of 12 numbers)
(2) pose(3x4 matrix in terms of 12 numbers)
'''
poses = {}
gt = np.load(file_name)
tmp = np.array([[0.0, 0.0, 0.0, 1.0]])
for cnt, pose in enumerate(gt):
pose = pose.reshape([-1, 4])
pose = np.concatenate([pose, tmp], axis=0)
if toCameraCoord:
poses[cnt] = self.toCameraCoord(pose)
else:
poses[cnt] = pose
return poses
# f = open(file_name, 'r')
# s = f.readlines()
# f.close()
# file_len = len(s)
#
# frame_idx = 0
# for cnt, line in enumerate(s):
# P = np.eye(4)
# line_split = [float(i) for i in line.split()]
# withIdx = int(len(line_split)==13)
# for row in range(3):
# for col in range(4):
# P[row, col] = line_split[row*4 + col + withIdx]
# if withIdx:
# frame_idx = line_split[0]
# else:
# frame_idx = cnt
# if toCameraCoord:
# poses[frame_idx] = self.toCameraCoord(P)
# else:
# poses[frame_idx] = P
# return poses
def trajectoryDistances(self, poses):
'''
Compute the length of the trajectory
poses dictionary: [frame_idx: pose]
'''
dist = [0]
sort_frame_idx = sorted(poses.keys())
for i in range(len(sort_frame_idx) - 1):
cur_frame_idx = sort_frame_idx[i]
next_frame_idx = sort_frame_idx[i + 1]
P1 = poses[cur_frame_idx]
P2 = poses[next_frame_idx]
dx = P1[0, 3] - P2[0, 3]
dy = P1[1, 3] - P2[1, 3]
dz = P1[2, 3] - P2[2, 3]
dist.append(dist[i] + np.sqrt(dx ** 2 + dy ** 2 + dz ** 2))
self.distance = dist[-1]
return dist
def rotationError(self, pose_error):
a = pose_error[0, 0]
b = pose_error[1, 1]
c = pose_error[2, 2]
d = 0.5 * (a + b + c - 1.0)
return np.arccos(max(min(d, 1.0), -1.0))
def translationError(self, pose_error):
dx = pose_error[0, 3]
dy = pose_error[1, 3]
dz = pose_error[2, 3]
return np.sqrt(dx ** 2 + dy ** 2 + dz ** 2)
def lastFrameFromSegmentLength(self, dist, first_frame, len_):
for i in range(first_frame, len(dist), 1):
if dist[i] > (dist[first_frame] + len_):
return i
return -1
def calcSequenceErrors(self, poses_gt, poses_result):
err = []
self.max_speed = 0
# pre-compute distances (from ground truth as reference)
dist = self.trajectoryDistances(poses_gt)
# every second, kitti data 10Hz
self.step_size = 10
# for all start positions do
# for first_frame in range(9, len(poses_gt), self.step_size):
for first_frame in range(0, len(poses_gt), self.step_size):
# for all segment lengths do
for i in range(self.num_lengths):
# current length
len_ = self.lengths[i]
# compute last frame of the segment
last_frame = self.lastFrameFromSegmentLength(dist, first_frame, len_)
# Continue if sequence not long enough
if last_frame == -1 or not (last_frame in poses_result.keys()) or not (
first_frame in poses_result.keys()):
continue
# compute rotational and translational errors, relative pose error (RPE)
pose_delta_gt = np.dot(np.linalg.inv(poses_gt[first_frame]), poses_gt[last_frame])
pose_delta_result = np.dot(np.linalg.inv(poses_result[first_frame]), poses_result[last_frame])
pose_error = np.dot(np.linalg.inv(pose_delta_result), pose_delta_gt)
r_err = self.rotationError(pose_error)
t_err = self.translationError(pose_error)
# compute speed
num_frames = last_frame - first_frame + 1.0
speed = len_ / (0.1 * num_frames) # 10Hz
if speed > self.max_speed:
self.max_speed = speed
err.append([first_frame, r_err / len_, t_err / len_, len_, speed])
return err
def saveSequenceErrors(self, err, file_name):
fp = open(file_name, 'w')
for i in err:
line_to_write = " ".join([str(j) for j in i])
fp.writelines(line_to_write + "\n")
fp.close()
def computeOverallErr(self, seq_err):
t_err = 0
r_err = 0
seq_len = len(seq_err)
for item in seq_err:
r_err += item[1]
t_err += item[2]
ave_t_err = t_err / seq_len
ave_r_err = r_err / seq_len
return ave_t_err, ave_r_err
def plot_xyz(self, seq, poses_ref, poses_pred, plot_path_dir):
def traj_xyz(axarr, positions_xyz, style='-', color='black', title="", label="", alpha=1.0):
"""
plot a path/trajectory based on xyz coordinates into an axis
:param axarr: an axis array (for x, y & z) e.g. from 'fig, axarr = plt.subplots(3)'
:param traj: trajectory
:param style: matplotlib line style
:param color: matplotlib color
:param label: label (for legend)
:param alpha: alpha value for transparency
"""
x = range(0, len(positions_xyz))
xlabel = "index"
ylabels = ["$x$ (m)", "$y$ (m)", "$z$ (m)"]
# plt.title('PRY')
for i in range(0, 3):
axarr[i].plot(x, positions_xyz[:, i], style, color=color, label=label, alpha=alpha)
axarr[i].set_ylabel(ylabels[i])
axarr[i].legend(loc="upper right", frameon=True)
axarr[2].set_xlabel(xlabel)
if title:
axarr[0].set_title('XYZ')
fig, axarr = plt.subplots(3, sharex="col", figsize=tuple([20, 10]))
pred_xyz = np.array([p[:3, 3] for _, p in poses_pred.items()])
traj_xyz(axarr, pred_xyz, '-', 'b', title='XYZ', label='Ours', alpha=1.0)
if poses_ref:
ref_xyz = np.array([p[:3, 3] for _, p in poses_ref.items()])
traj_xyz(axarr, ref_xyz, '-', 'r', label='GT', alpha=1.0)
name = "{}_xyz".format(seq)
plt.savefig(plot_path_dir + "/" + name + ".png", bbox_inches='tight', pad_inches=0.1)
pdf = matplotlib.backends.backend_pdf.PdfPages(plot_path_dir + "/" + name + ".pdf")
fig.tight_layout()
pdf.savefig(fig)
# plt.show()
pdf.close()
def plot_rpy(self, seq, poses_ref, poses_pred, plot_path_dir, axes='szxy'):
def traj_rpy(axarr, orientations_euler, style='-', color='black', title="", label="", alpha=1.0):
"""
plot a path/trajectory's Euler RPY angles into an axis
:param axarr: an axis array (for R, P & Y) e.g. from 'fig, axarr = plt.subplots(3)'
:param traj: trajectory
:param style: matplotlib line style
:param color: matplotlib color
:param label: label (for legend)
:param alpha: alpha value for transparency
"""
x = range(0, len(orientations_euler))
xlabel = "index"
ylabels = ["$roll$ (deg)", "$pitch$ (deg)", "$yaw$ (deg)"]
# plt.title('PRY')
for i in range(0, 3):
axarr[i].plot(x, np.rad2deg(orientations_euler[:, i]), style,
color=color, label=label, alpha=alpha)
axarr[i].set_ylabel(ylabels[i])
axarr[i].legend(loc="upper right", frameon=True)
axarr[2].set_xlabel(xlabel)
if title:
axarr[0].set_title('PRY')
fig_rpy, axarr_rpy = plt.subplots(3, sharex="col", figsize=tuple([20, 10]))
pred_rpy = np.array([tr.euler_from_matrix(p, axes=axes) for _, p in poses_pred.items()])
traj_rpy(axarr_rpy, pred_rpy, '-', 'b', title='RPY', label='Ours', alpha=1.0)
if poses_ref:
ref_rpy = np.array([tr.euler_from_matrix(p, axes=axes) for _, p in poses_ref.items()])
traj_rpy(axarr_rpy, ref_rpy, '-', 'r', label='GT', alpha=1.0)
name = "{}_rpy".format(seq)
plt.savefig(plot_path_dir + "/" + name + ".png", bbox_inches='tight', pad_inches=0.1)
pdf = matplotlib.backends.backend_pdf.PdfPages(plot_path_dir + "/" + name + ".pdf")
fig_rpy.tight_layout()
pdf.savefig(fig_rpy)
# plt.show()
pdf.close()
def plotPath_2D_3(self, seq, poses_gt, poses_result, plot_path_dir):
'''
plot path in XY, XZ and YZ plane
'''
fontsize_ = 10
plot_keys = ["Ground Truth", "Ours"]
start_point = [0, 0]
style_pred = 'b-'
style_gt = 'r-'
style_O = 'ko'
### get the value
if poses_gt:
poses_gt = [(k, poses_gt[k]) for k in sorted(poses_gt.keys())]
x_gt = np.asarray([pose[0, 3] for _, pose in poses_gt])
y_gt = np.asarray([pose[1, 3] for _, pose in poses_gt])
z_gt = np.asarray([pose[2, 3] for _, pose in poses_gt])
poses_result = [(k, poses_result[k]) for k in sorted(poses_result.keys())]
x_pred = np.asarray([pose[0, 3] for _, pose in poses_result])
y_pred = np.asarray([pose[1, 3] for _, pose in poses_result])
z_pred = np.asarray([pose[2, 3] for _, pose in poses_result])
fig = plt.figure(figsize=(20, 6), dpi=100)
### plot the figure
plt.subplot(1, 3, 1)
ax = plt.gca()
if poses_gt: plt.plot(x_gt, z_gt, style_gt, label=plot_keys[0])
plt.plot(x_pred, z_pred, style_pred, label=plot_keys[1])
plt.plot(start_point[0], start_point[1], style_O, label='Start Point')
plt.legend(loc="upper right", prop={'size': fontsize_})
plt.xlabel('x (m)', fontsize=fontsize_)
plt.ylabel('z (m)', fontsize=fontsize_)
### set the range of x and y
xlim = ax.get_xlim()
ylim = ax.get_ylim()
xmean = np.mean(xlim)
ymean = np.mean(ylim)
plot_radius = max([abs(lim - mean_)
for lims, mean_ in ((xlim, xmean),
(ylim, ymean))
for lim in lims])
ax.set_xlim([xmean - plot_radius, xmean + plot_radius])
ax.set_ylim([ymean - plot_radius, ymean + plot_radius])
plt.subplot(1, 3, 2)
ax = plt.gca()
if poses_gt: plt.plot(x_gt, y_gt, style_gt, label=plot_keys[0])
plt.plot(x_pred, y_pred, style_pred, label=plot_keys[1])
plt.plot(start_point[0], start_point[1], style_O, label='Start Point')
plt.legend(loc="upper right", prop={'size': fontsize_})
plt.xlabel('x (m)', fontsize=fontsize_)
plt.ylabel('y (m)', fontsize=fontsize_)
xlim = ax.get_xlim()
ylim = ax.get_ylim()
xmean = np.mean(xlim)
ymean = np.mean(ylim)
ax.set_xlim([xmean - plot_radius, xmean + plot_radius])
ax.set_ylim([ymean - plot_radius, ymean + plot_radius])
plt.subplot(1, 3, 3)
ax = plt.gca()
if poses_gt: plt.plot(y_gt, z_gt, style_gt, label=plot_keys[0])
plt.plot(y_pred, z_pred, style_pred, label=plot_keys[1])
plt.plot(start_point[0], start_point[1], style_O, label='Start Point')
plt.legend(loc="upper right", prop={'size': fontsize_})
plt.xlabel('y (m)', fontsize=fontsize_)
plt.ylabel('z (m)', fontsize=fontsize_)
xlim = ax.get_xlim()
ylim = ax.get_ylim()
xmean = np.mean(xlim)
ymean = np.mean(ylim)
ax.set_xlim([xmean - plot_radius, xmean + plot_radius])
ax.set_ylim([ymean - plot_radius, ymean + plot_radius])
png_title = "{}_path".format(seq)
plt.savefig(plot_path_dir + "/" + png_title + ".png", bbox_inches='tight', pad_inches=0.1)
pdf = matplotlib.backends.backend_pdf.PdfPages(plot_path_dir + "/" + png_title + ".pdf")
fig.tight_layout()
pdf.savefig(fig)
# plt.show()
plt.close()
def plotPath_3D(self, seq, poses_gt, poses_result, plot_path_dir):
"""
plot the path in 3D space
"""
from mpl_toolkits.mplot3d import Axes3D
start_point = [[0], [0], [0]]
fontsize_ = 8
style_pred = 'b-'
style_gt = 'r-'
style_O = 'ko'
poses_dict = {}
poses_dict["Ours"] = poses_result
if poses_gt:
poses_dict["Ground Truth"] = poses_gt
fig = plt.figure(figsize=(8, 8), dpi=110)
ax = fig.gca(projection='3d')
for key, _ in poses_dict.items():
plane_point = []
for frame_idx in sorted(poses_dict[key].keys()):
pose = poses_dict[key][frame_idx]
plane_point.append([pose[0, 3], pose[2, 3], pose[1, 3]])
plane_point = np.asarray(plane_point)
style = style_pred if key == 'Ours' else style_gt
plt.plot(plane_point[:, 0], plane_point[:, 1], plane_point[:, 2], style, label=key)
plt.plot(start_point[0], start_point[1], start_point[2], style_O, label='Start Point')
xlim = ax.get_xlim3d()
ylim = ax.get_ylim3d()
zlim = ax.get_zlim3d()
xmean = np.mean(xlim)
ymean = np.mean(ylim)
zmean = np.mean(zlim)
plot_radius = max([abs(lim - mean_)
for lims, mean_ in ((xlim, xmean),
(ylim, ymean),
(zlim, zmean))
for lim in lims])
ax.set_xlim3d([xmean - plot_radius, xmean + plot_radius])
ax.set_ylim3d([ymean - plot_radius, ymean + plot_radius])
ax.set_zlim3d([zmean - plot_radius, zmean + plot_radius])
ax.legend()
# plt.legend(loc="upper right", prop={'size':fontsize_})
ax.set_xlabel('x (m)', fontsize=fontsize_)
ax.set_ylabel('z (m)', fontsize=fontsize_)
ax.set_zlabel('y (m)', fontsize=fontsize_)
ax.view_init(elev=20., azim=-35)
png_title = "{}_path_3D".format(seq)
plt.savefig(plot_path_dir + "/" + png_title + ".png", bbox_inches='tight', pad_inches=0.1)
pdf = matplotlib.backends.backend_pdf.PdfPages(plot_path_dir + "/" + png_title + ".pdf")
fig.tight_layout()
pdf.savefig(fig)
# plt.show()
plt.close()
def plotError_segment(self, seq, avg_segment_errs, plot_error_dir):
'''
avg_segment_errs: dict [100: err, 200: err...]
'''
fontsize_ = 15
plot_y_t = []
plot_y_r = []
plot_x = []
for idx, value in avg_segment_errs.items():
if value == []:
continue
plot_x.append(idx)
plot_y_t.append(value[0] * 100)
plot_y_r.append(value[1] / np.pi * 180)
fig = plt.figure(figsize=(15, 6), dpi=100)
plt.subplot(1, 2, 1)
plt.plot(plot_x, plot_y_t, 'ks-')
plt.axis([100, np.max(plot_x), 0, np.max(plot_y_t) * (1 + 0.1)])
plt.xlabel('Path Length (m)', fontsize=fontsize_)
plt.ylabel('Translation Error (%)', fontsize=fontsize_)
plt.subplot(1, 2, 2)
plt.plot(plot_x, plot_y_r, 'ks-')
plt.axis([100, np.max(plot_x), 0, np.max(plot_y_r) * (1 + 0.1)])
plt.xlabel('Path Length (m)', fontsize=fontsize_)
plt.ylabel('Rotation Error (deg/m)', fontsize=fontsize_)
png_title = "{}_error_seg".format(seq)
plt.savefig(plot_error_dir + "/" + png_title + ".png", bbox_inches='tight', pad_inches=0.1)
# plt.show()
def plotError_speed(self, seq, avg_speed_errs, plot_error_dir):
'''
avg_speed_errs: dict [s1: err, s2: err...]
'''
fontsize_ = 15
plot_y_t = []
plot_y_r = []
plot_x = []
for idx, value in avg_speed_errs.items():
if value == []:
continue
plot_x.append(idx * 3.6)
plot_y_t.append(value[0] * 100)
plot_y_r.append(value[1] / np.pi * 180)
fig = plt.figure(figsize=(15, 6), dpi=100)
plt.subplot(1, 2, 1)
plt.plot(plot_x, plot_y_t, 'ks-')
plt.axis([np.min(plot_x), np.max(plot_x), 0, np.max(plot_y_t) * (1 + 0.1)])
plt.xlabel('Speed (km/h)', fontsize=fontsize_)
plt.ylabel('Translation Error (%)', fontsize=fontsize_)
plt.subplot(1, 2, 2)
plt.plot(plot_x, plot_y_r, 'ks-')
plt.axis([np.min(plot_x), np.max(plot_x), 0, np.max(plot_y_r) * (1 + 0.1)])
plt.xlabel('Speed (km/h)', fontsize=fontsize_)
plt.ylabel('Rotation Error (deg/m)', fontsize=fontsize_)
png_title = "{}_error_speed".format(seq)
plt.savefig(plot_error_dir + "/" + png_title + ".png", bbox_inches='tight', pad_inches=0.1)
# plt.show()
def computeSegmentErr(self, seq_errs):
'''
This function calculates average errors for different segment.
'''
segment_errs = {}
avg_segment_errs = {}
for len_ in self.lengths:
segment_errs[len_] = []
# Get errors
for err in seq_errs:
len_ = err[3]
t_err = err[2]
r_err = err[1]
segment_errs[len_].append([t_err, r_err])
# Compute average
for len_ in self.lengths:
if segment_errs[len_] != []:
avg_t_err = np.mean(np.asarray(segment_errs[len_])[:, 0])
avg_r_err = np.mean(np.asarray(segment_errs[len_])[:, 1])
avg_segment_errs[len_] = [avg_t_err, avg_r_err]
else:
avg_segment_errs[len_] = []
return avg_segment_errs
def computeSpeedErr(self, seq_errs):
'''
This function calculates average errors for different speed.
'''
segment_errs = {}
avg_segment_errs = {}
for s in range(2, 25, 2):
segment_errs[s] = []
# Get errors
for err in seq_errs:
speed = err[4]
t_err = err[2]
r_err = err[1]
for key in segment_errs.keys():
if np.abs(speed - key) < 2.0:
segment_errs[key].append([t_err, r_err])
# Compute average
for key in segment_errs.keys():
if segment_errs[key] != []:
avg_t_err = np.mean(np.asarray(segment_errs[key])[:, 0])
avg_r_err = np.mean(np.asarray(segment_errs[key])[:, 1])
avg_segment_errs[key] = [avg_t_err, avg_r_err]
else:
avg_segment_errs[key] = []
return avg_segment_errs
def call_evo_traj(self, pred_file, save_file, gt_file=None, plot_plane='xy'):
command = ''
if os.path.exists(save_file): os.remove(save_file)
if gt_file != None:
command = ("evo_traj kitti %s --ref=%s --plot_mode=%s --save_plot=%s") \
% (pred_file, gt_file, plot_plane, save_file)
else:
command = ("evo_traj kitti %s --plot_mode=%s --save_plot=%s") \
% (pred_file, plot_plane, save_file)
os.system(command)
def eval(self, toCameraCoord):
'''
to_camera_coord: whether the predicted pose needs to be convert to camera coordinate
'''
eval_dir = self.result_dir
if not os.path.exists(eval_dir):
os.makedirs(eval_dir)
total_err = []
ave_errs = {}
for seq in self.eval_seqs:
eva_seq_dir = os.path.join(eval_dir, '{}_eval_{}'.format(seq, self.epoch))
pred_file_name = self.result_dir + '/{}_pred.npy'.format(seq)
gt_file_name = self.gt_dir + '/{}.npy'.format(seq)
# save_file_name = eva_seq_dir + '/{}.pdf'.format(seq)
assert os.path.exists(pred_file_name), "File path error: {}".format(pred_file_name)
poses_result = self.loadPoses(pred_file_name, toCameraCoord=toCameraCoord)
if not os.path.exists(eva_seq_dir):
os.makedirs(eva_seq_dir)
os.system('cp %s %s' % (pred_file_name, eva_seq_dir)) ###SAVE THE txt FILE
if seq not in self.seqs_with_gt:
self.calcSequenceErrors(poses_result, poses_result)
print("\nSequence: " + str(seq))
print('Distance (m): %d' % self.distance)
print('Max speed (km/h): %d' % (self.max_speed * 3.6))
self.plot_rpy(seq, None, poses_result, eva_seq_dir)
self.plot_xyz(seq, None, poses_result, eva_seq_dir)
self.plotPath_3D(seq, None, poses_result, eva_seq_dir)
self.plotPath_2D_3(seq, None, poses_result, eva_seq_dir)
continue
poses_gt = self.loadPoses(gt_file_name, toCameraCoord=False)
# ----------------------------------------------------------------------
# compute sequence errors
seq_err = self.calcSequenceErrors(poses_gt, poses_result)
self.saveSequenceErrors(seq_err, eva_seq_dir + '/{}_error.txt'.format(seq))
total_err += seq_err
# ----------------------------------------------------------------------
# Compute segment errors
avg_segment_errs = self.computeSegmentErr(seq_err)
avg_speed_errs = self.computeSpeedErr(seq_err)
# ----------------------------------------------------------------------
# compute overall error
ave_t_err, ave_r_err = self.computeOverallErr(seq_err)
print("\nSequence: " + str(seq))
print('Distance (m): %d' % self.distance)
print('Max speed (km/h): %d' % (self.max_speed * 3.6))
print("Average sequence translational RMSE(%): {0:.4f}".format(ave_t_err * 100))
save_txt = os.path.join(self.result_dir, 'output.txt')
with open(save_txt, 'a+') as tt:
tt.write('epoch is: {:d} \n'.format(self.epoch))
tt.write('Average sequence translational RMSE(%): {0:.4f}\n'.format(ave_t_err * 100))
tt.write('Average sequence rotational error(deg/m): {0:.4f} \n'.format(ave_r_err / np.pi * 180))
print("Average sequence rotational error (deg/m): {0:.4f}\n".format(ave_r_err / np.pi * 180))
with open(eva_seq_dir + '/%s_stats.txt' % seq, 'w') as f:
f.writelines('Average sequence translation RMSE (%): {0:.4f}\n'.format(ave_t_err * 100))
f.writelines('Average sequence rotation error (deg/m): {0:.4f}'.format(ave_r_err / np.pi * 180))
ave_errs[seq] = [ave_t_err, ave_r_err]
self.plot_rpy(seq, poses_gt, poses_result, eva_seq_dir)
self.plot_xyz(seq, poses_gt, poses_result, eva_seq_dir)
self.plotPath_3D(seq, poses_gt, poses_result, eva_seq_dir)
self.plotPath_2D_3(seq, poses_gt, poses_result, eva_seq_dir)
self.plotError_segment(seq, avg_segment_errs, eva_seq_dir)
self.plotError_speed(seq, avg_speed_errs, eva_seq_dir)
plt.close('all')
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='KITTI Evaluation toolkit')
parser.add_argument('--gt_dir', type=str, default='./ground_truth_pose',
help='Directory path of the ground truth odometry')
parser.add_argument('--result_dir', type=str, default='./data/',
help='Directory path of storing the odometry results')
parser.add_argument('--eva_seqs', type=str, default='09_pred,10_pred,11_pred', help='The sequences to be evaluated')
parser.add_argument('--toCameraCoord', type=lambda x: (str(x).lower() == 'true'), default=False,
help='Whether to convert the pose to camera coordinate')
parser.add_argument('--epoch', type=int, default=0, help='the value of epoch when eval this time')
args = parser.parse_args()
pose_eval = kittiOdomEval(args)
pose_eval.eval(toCameraCoord=args.toCameraCoord) # set the value according to the predicted results