-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathdelta_hedging_mc.py
262 lines (204 loc) · 8.47 KB
/
delta_hedging_mc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
from math import log, sqrt, exp
import matplotlib.pyplot as plt
from scipy.stats import norm
import random
import pandas as pd
'''
k = strike price
s0 = initial stock price
dt = t/T = time to maturity
rf = remaining time
r = risk-less short rate
sig = volatility of stock value
m = the number of path nodes
n = the number of simulations
'''
class EuropeanCallOption:
def __init__(self, s0, k, r, sig, dt):
self.s0 = s0
self.k = k
self.r = r
d1_1 = self.d1(s0, k, r, sig, dt)
d2_1 = self.d2(d1_1, sig, dt)
self.dt = dt
self.value_1 = self.value(s0, k, r, dt, d1_1, d2_1)
self.delta_1 = self.delta(d1_1)
def d1(self, s0, k, r, sig, dt):
return (log(s0 / k) + (r + 0.5 * sig ** 2) * dt) / (sig * sqrt(dt))
def d2(self, d1, sig, dt):
return d1 - sig * sqrt(dt)
def value(self, s0, k, r, dt, d1, d2):
return s0 * exp(-r * dt) * norm.cdf(d1) - k * exp(-r * dt) * norm.cdf(d2)
def delta(self, d1):
return norm.cdf(d1)
class EuropeanPutOption:
def __init__(self, s0, k, r, sig, dt):
self.s0 = s0
self.k = k
self.r = r
d1_1 = self.d1(s0, k, r, sig, dt)
d2_1 = self.d2(d1_1, sig, dt)
self.dt = dt
self.value_1 = self.value(s0, k, r, dt, d1_1, d2_1)
self.delta_1 = self.delta(d1_1)
def d1(self, s0, k, r, sig, dt):
return (log(s0 / k) + (r + 0.5 * sig ** 2) * dt) / (sig * sqrt(dt))
def d2(self, d1, sig, dt):
return d1 - sig * sqrt(dt)
def value(self, s0, k, r, dt, d1, d2):
return k * exp(-r * dt) * norm.cdf(-d2) - s0 * exp(-r * dt) * norm.cdf(-d1)
def delta(self, d1):
return norm.cdf(d1) - 1
class EuropeanOption:
def __init__(self, s0, k, dt, r, sig, m):
self.stock_1 = self.stock_list(s0, dt, r, sig, m)
self.strike_1 = self.strike_list(k, m)
def stock_list(self, s0, dt, r, sig, m):
delta_t = dt / m # length of time interval
path = [s0]
for j in range(1, m):
path.append(path[-1] * exp((r - 0.5 * sig ** 2) * delta_t + (sig * sqrt(delta_t) * random.gauss(0, 1))))
stock = path
return stock
def strike_list(self, k, m):
strike = [k]
for i in range(1, m):
strike.append(k)
return strike
class Hedging:
def __init__(self, name, s0, k, dt, r, sig, m, towards, number, start_date, end_date):
sth = EuropeanOption(s0, k, dt, r, sig, m)
s_l = sth.stock_1
self.fixed_stock_path_1 = self.fixed_stock_path(s_l)
self.total_delta_1 = self.total_delta(name, s_l, k, r, sig, m, start_date, end_date)
total_delta_2 = self.total_delta(name, s_l, k, r, sig, m, start_date, end_date)
self.underlying_position_1 = self.underlying_position(total_delta_2, m, towards, number)
underlying_position_2 = self.underlying_position(total_delta_2, m, towards, number)
self.pol_1 = self.pol(s_l, underlying_position_2, m)
self.totaling_value_1 = self.totaling_value(name, s_l, k, r, sig, m, start_date, end_date)
def fixed_stock_path(self, s_l):
return s_l
def total_delta(self, name, s_l, k, r, sig, m, start_date, end_date):
# s_l = stock list
# name: "c"=call, "p"=put
delta_number = []
for i in range(0, m):
current_s = s_l[i]
s0 = current_s
t = pd.bdate_range(start_date, end_date)
dt = (len(t) / 250) * (1 - i / m)
if name == "c":
total = EuropeanCallOption(s0, k, r, sig, dt)
delta_number.append(total.delta_1)
else:
total = EuropeanPutOption(s0, k, r, sig, dt)
delta_number.append(total.delta_1)
return delta_number
def underlying_position(self, total_delta, m, towards, number):
# towards: buy=1, sell=-1
total_position = []
for i in range(0, m):
b = total_delta[i]
position = -round(b * number, 0) * towards
total_position.append(position)
return total_position
def pol(self, s_l, underlying_position, m):
pol_in_stock = [0]
for i in range(1, m):
pol_in_stock.append(
(s_l[i] - s_l[i - 1]) * underlying_position[i - 1])
return pol_in_stock
def totaling_value(self, name, s_l, k, r, sig, m, start_date, end_date):
# name: "c"=call, "p"=put
total_value = []
for i in range(0, m):
s0 = s_l[i] # s0 = current s
t = pd.bdate_range(start_date, end_date)
dt = (len(t) / 250) * (1 - i / m)
if name == "c":
total = EuropeanCallOption(s0, k, r, sig, dt)
else:
total = EuropeanPutOption(s0, k, r, sig, dt)
total_value.append(total.value_1)
return total_value
def graph_show(name, s0, k, dt, r, sig, m, towards, number, start_date, end_date):
# graph simulation (underlying price monte carlo simulation)
one_path = Hedging(name, s0, k, dt, r, sig, m, towards, number, start_date, end_date)
list_stock = one_path.fixed_stock_path_1
fixed_strike = EuropeanOption(s0, k, dt, r, sig, m)
list_strike = fixed_strike.strike_1
plt.figure(figsize=(12, 6))
plt.grid(True) # 显示网格线
plt.xlabel('Time step')
plt.ylabel('price')
plt.legend()
plt.plot(list_stock)
plt.show()
# list show
list_value = one_path.totaling_value_1
list_delta = one_path.total_delta_1
list_position = one_path.underlying_position_1
list_pol = one_path.pol_1
my_dict = {'s': list_stock, 'k': list_strike, 'value': list_value, 'delta': list_delta,
'underlying_position': list_position,
'PoL_in_stock': list_pol}
total_list = pd.DataFrame(my_dict)
print(total_list)
def distribution(name, s0, k, dt, r, sig, m, n, towards, number, start_date, end_date):
# name: "c"=call, "p"=put
acc_value = []
acc_pol = []
for i in range(0, n):
# the final value - the initial value
one_list = Hedging(name, s0, k, dt, r, sig, m, towards, number, start_date, end_date)
list_stock = one_list.fixed_stock_path_1
s0 = list_stock[0]
t = pd.bdate_range(start_date, end_date)
dt = (len(t) / 250)
if name == "c":
total_0 = EuropeanCallOption(s0, k, r, sig, dt)
value_0 = total_0.value_1
else:
total_0 = EuropeanPutOption(s0, k, r, sig, dt)
value_0 = total_0.value_1
s0 = list_stock[-1]
t = pd.bdate_range(start_date, end_date)
dt = (len(t) / 250) * (1 / m)
if name == "c":
total_1 = EuropeanCallOption(s0, k, r, sig, dt)
value_1 = total_1.value_1
else:
total_1 = EuropeanPutOption(s0, k, r, sig, dt)
value_1 = total_1.value_1
acc_s = (value_1 - value_0) * number
acc_value.append(acc_s)
# accelerate PoL in stock
v = 0
for z in range(1, m):
a = one_list.underlying_position_1
b = (list_stock[z] - list_stock[z - 1]) * a[z - 1]
v = v + b
acc_pol.append(v)
# revenue = value - pol in stock
if len(acc_pol) == len(acc_value):
revenue = []
for x in range(0, n):
revenue_1 = acc_value[x] - acc_pol[x]
revenue.append(revenue_1)
my_dict_1 = {'revenue': revenue}
revenue_data = pd.DataFrame(my_dict_1)
plt.hist(revenue_data.revenue, bins=50, density=False)
plt.xlabel('Returns')
plt.ylabel('Frequency')
plt.title('Returns Best fit Distribution')
plt.show()
else:
print('please check acc_value and acc_pol')
pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', None)
# strike price = 100; initial stock price = 100; time to maturity = 20/250 = 0.08;
# risk-less short rate = 0.03; volatility of stock value = 0.2
# the number of path nodes = 20; the number of simulations = 100000
# type = call option; towards = buy; number of stock = 100
graph_show('c', 100, 100, 0.08, 0.03, 0.2, 20, 1, 100, "2021-7-05", "2021-7-31")
distribution('c', 100, 100, 0.08, 0.03, 0.2, 20, 100000, 1, 100, "2021-7-05", "2021-7-31")