
Data Science in Transport Planning

February 2024

Tom van Vuren

Strategic Business Partner, Amey

Amey

Amey

- An overview of the use of data in transport planning in the real world
- The potential of new data sources
- The importance of data validation and critiquing and the dangers of bias in data-driven transport planning workflows
- The need for of data science skills in today's industry

Existing Data Sources

Check:

the provenance of the data source

availability and transparency of reports describing the nature of the data, and the collection and processing steps

definitional issues that might impact on compatibility with other sources

suspected or known biases, their size, and how these have been treated

spatial coverage and date of data collection and/or release

any restrictions on access or use of data Age of data

Newly collected data

Consider:

spatial coverage

data collection period

sample size and rate

the need to represent characteristics of the larger population

consistency of definitions with existing data sources

method of data collection data privacy

Use of Data Be aware of:

Errors

Bias

Unconscious bias

National Data

- ONS Population Data
- Employment and Labour Market Data
- Valuation Office Agency Floorspace Data
- DfE School Census Data
- DVLA Vehicle Licensing Statistics
- MOSAIC
- ACORN
- Index of Multiple Deprivation
- AddressBase
- ONS Boundary Data

Data from Existing National Models

National Trip End Model (NTEM) and Trip End Model Presentation Program (TEMPro)

- Multimodal but...
- MSOA level only, therefore...
- CTripEnd model
- Freight?

National Road Traffic Projections

Based on National Transport Model

MOIRA (Model Of Inter-Region Activity?) / LENNON (Latest Earnings Networked Nationally Overnight)

Rail only

Network Data

OS Mastermap Topography Layer OS Mastermap Highways Network OS Terrain Mapping OS Open Roads OpenStreetMap DfT Major Roads Database National Cycle Network National Rail Timetable CIF Railway Timetable Data **Traveline National Dataset Realtime Trains BODS Bus Open Data Service Google Distance Matrix API**

Movement Data

Mobile Network Data GPS Tracking Data TomTom INRIX (TrafficMaster) TeleTrac Navman **Electronic Ticket Machine Data** LENNON **Rail Users and Drivers Dataset (RUDD) Census Journey to Work International Passenger Survey CAA Survey of Passengers**

Usage Data

Office of Road and Rail Station Usage Data

- Rail Passenger Numbers and Crowding on Weekdays
- **DfT Road Traffic Statistics**
- **DfT Congestion Statistics**
- National Highways Traffic Information System (WebTRIS)
- **National Travel Survey**
- **Continuous Survey of Road Goods Transport**
- **DfT Bus Statistics**
- **UK Time Use Survey**

Land Use Data


NaPTAN National Public Transport Access Nodes Census Data

Business Register and Employment Survey (BRES)

Household Surveys

Based on recall Clarity of terminology Obtaining representative sample Intrusive – how long is reasonable

Who to interview Representativeness Non-travellers Intrusive – impact on choices

Mobile Phone Data

Spatial detail Estimating trip ends – what is a stay Limited info on purpose and mode Lack of socio-demographics

Unconscious Bias 1: Cycling Scheme

What if a cycling scheme trebles usage on you improved route?

Copenhagen: 90% of newly attracted cyclists have re-routed

DfT study:

11-28% came from cars,

45-58% from public transport,

19-26% from walking,

17-28% induced demand

Amey

How successful is theBristol ULEZ?

- 9.7% overall?
- 4.8% in ULEZ zone?
- what is counterfactual?

⁴⁴Data for Sites 3 (+15.3 μ g/m³) and 12 (+10.2 μ g/m³) have been impacted by non-CAZ related sources and results excluded from the report analysis. Site 3 is impacted by very localised and site-specific changes to a fast-food restaurant ventilation system. Further investigation is needed for site 12."

Diffusion Tube Monitoring Locations ¹	Average Change in annual NO ₂ Concentrations (μg/m ³)	Average Change in annual NO ₂ Concentrations (%)
Sites with >75% Data Collection Rates* - All	-3.2	-9.7%
Sites with >75% Data Collection Rates - Inside CAZ	-4.4	-12.6%
Sites with >75% Data Collection Rates - Outside CAZ	-2.5	-7.8%

New ways of working

Low entry Open Source Data Open Source Tools Machine Learning Artificial Intelligence Agent-based models

Old ways of working

Commercial tools Barriers to entry Hierarchy in expertise Tried and tested Prescriptive

Opportunity

Disruption Creating community New questions Democratising models and data Narrative, not numbers

Take-Aways

Use existing sources where possible Take responsibility for your data Be aware of (unconscious) bias Always challenge

Further Reading

TAG Unit M1.2: Data Sources and Surveys

TAG Data Book

What you were promised

What you got

Thank you

tom-vanvuren@amey.co.uk tomvanvuren@hotmail.com t.vanvuren@its.leeds.ac.uk