-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsaliency_detection.py
98 lines (65 loc) · 2.38 KB
/
saliency_detection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
import numpy as np
from PIL import Image
def srgb_to_cielab(sR, sG, sB):
#------------------------
# sRGB to XYZ conversion
#------------------------
R = sR.astype(np.float64)/255.0
G = sG.astype(np.float64)/255.0
B = sB.astype(np.float64)/255.0
maskr = (R <= 0.04045)
maskg = (G <= 0.04045)
maskb = (B <= 0.04045)
r, g, b = np.zeros_like(R), np.zeros_like(G), np.zeros_like(B)
r[maskr] = R[maskr]/12.92
g[maskg] = G[maskg]/12.92
b[maskb] = B[maskb]/12.92
r[~maskr] = np.power((R[~maskr]+0.055)/1.055,2.4)
g[~maskg] = np.power((G[~maskg]+0.055)/1.055,2.4)
b[~maskb] = np.power((B[~maskb]+0.055)/1.055,2.4)
X = r*0.4124564 + g*0.3575761 + b*0.1804375
Y = r*0.2126729 + g*0.7151522 + b*0.0721750
Z = r*0.0193339 + g*0.1191920 + b*0.9503041
#------------------------
# XYZ to LAB conversion
#------------------------
epsilon = 0.008856 # actual CIE standard
kappa = 903.3 # actual CIE standard
Xr = 0.950456 # reference white
Yr = 1.0 # reference white
Zr = 1.088754 # reference white
xr = X/Xr
yr = Y/Yr
zr = Z/Zr
maskx = (xr > epsilon)
masky = (yr > epsilon)
maskz = (zr > epsilon)
fx, fy, fz = np.zeros_like(xr), np.zeros_like(yr), np.zeros_like(zr)
fx[maskx] = np.power(xr[maskx], 1.0/3.0)
fy[masky] = np.power(yr[masky], 1.0/3.0)
fz[maskz] = np.power(zr[maskz], 1.0/3.0)
fx[~maskx] = (kappa*xr[~maskx] + 16.0)/116.0
fy[~masky] = (kappa*yr[~masky] + 16.0)/116.0
fz[~maskz] = (kappa*zr[~maskz] + 16.0)/116.0
lvals = 116.0*fy-16.0;
avals = 500.0*(fx-fy);
bvals = 200.0*(fy-fz);
return lvals, avals, bvals
def compute_saliency_map(srgb, sigma=0):
if sigma > 0:
from scipy.ndimage import gaussian_filter
srgb = gaussian_filter(srgb, sigma = (sigma, sigma, 0))
sr, sg, sb = srgb[:,:,0], srgb[:,:,1], srgb[:,:,2]
lvals, avals, bvals = srgb_to_cielab(sr, sg, sb)
lmean, amean, bmean = lvals.mean(), avals.mean(), bvals.mean()
salmap = (lvals-lmean)**2 + (avals-amean)**2 + (bvals-bmean)**2
salimg = (255*salmap/salmap.max() + 0.5).astype(np.uint8) # values of salmap scaled to [0,255]
salimg = np.stack([salimg, salimg, salimg]).transpose(1,2,0)
return salmap, salimg
if __name__ == "__main__":
filepath = './bee.png'
img = Image.open(filepath).convert("RGB")
img = np.asarray(img) # shape is H,W,C
salmap, salimg = compute_saliency_map(img, sigma=0)
combo = np.concatenate([img,salimg], axis=1)
Image.fromarray(combo).save('./bee_sal.png')