-
Notifications
You must be signed in to change notification settings - Fork 15
/
spherical_kmeans.py
391 lines (336 loc) · 16.7 KB
/
spherical_kmeans.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
import warnings
import numpy as np
from sklearn.preprocessing import normalize
from sklearn.utils.sparsefuncs_fast import assign_rows_csr
from sklearn.cluster._k_means_fast import _mini_batch_update_csr
from sklearn.utils.validation import _check_sample_weight
from sklearn.utils import check_array, check_random_state
from sklearn.utils.extmath import row_norms
import scipy.sparse as sp
from sklearn.cluster import MiniBatchKMeans
from sklearn.cluster.k_means_ import (
_init_centroids,
_labels_inertia,
_tolerance,
_mini_batch_step,
_mini_batch_convergence
)
def _check_normalize_sample_weight(sample_weight, X):
"""Set sample_weight if None, and check for correct dtype"""
sample_weight_was_none = sample_weight is None
sample_weight = _check_sample_weight(sample_weight, X)
if not sample_weight_was_none:
# normalize the weights to sum up to n_samples
# an array of 1 (i.e. samples_weight is None) is already normalized
n_samples = len(sample_weight)
scale = n_samples / sample_weight.sum()
sample_weight *= scale
return sample_weight
def _mini_batch_spherical_step(X, sample_weight, x_squared_norms, centers, weight_sums,
old_center_buffer, compute_squared_diff,
distances, random_reassign=False,
random_state=None, reassignment_ratio=.01,
verbose=False):
"""Incremental update of the centers for the Minibatch K-Means algorithm.
Parameters
----------
X : array, shape (n_samples, n_features)
The original data array.
sample_weight : array-like, shape (n_samples,)
The weights for each observation in X.
x_squared_norms : array, shape (n_samples,)
Squared euclidean norm of each data point.
centers : array, shape (k, n_features)
The cluster centers. This array is MODIFIED IN PLACE
counts : array, shape (k,)
The vector in which we keep track of the numbers of elements in a
cluster. This array is MODIFIED IN PLACE
distances : array, dtype float, shape (n_samples), optional
If not None, should be a pre-allocated array that will be used to store
the distances of each sample to its closest center.
May not be None when random_reassign is True.
random_state : int, RandomState instance or None (default)
Determines random number generation for centroid initialization and to
pick new clusters amongst observations with uniform probability. Use
an int to make the randomness deterministic.
See :term:`Glossary <random_state>`.
random_reassign : boolean, optional
If True, centers with very low counts are randomly reassigned
to observations.
reassignment_ratio : float, optional
Control the fraction of the maximum number of counts for a
center to be reassigned. A higher value means that low count
centers are more likely to be reassigned, which means that the
model will take longer to converge, but should converge in a
better clustering.
verbose : bool, optional, default False
Controls the verbosity.
compute_squared_diff : bool
If set to False, the squared diff computation is skipped.
old_center_buffer : int
Copy of old centers for monitoring convergence.
Returns
-------
inertia : float
Sum of squared distances of samples to their closest cluster center.
squared_diff : numpy array, shape (n_clusters,)
Squared distances between previous and updated cluster centers.
"""
# Perform label assignment to nearest centers
nearest_center, inertia = _labels_inertia(X, sample_weight,
x_squared_norms, centers,
distances=distances)
if random_reassign and reassignment_ratio > 0:
random_state = check_random_state(random_state)
# Reassign clusters that have very low weight
to_reassign = weight_sums < reassignment_ratio * weight_sums.max()
# pick at most .5 * batch_size samples as new centers
if to_reassign.sum() > .5 * X.shape[0]:
indices_dont_reassign = \
np.argsort(weight_sums)[int(.5 * X.shape[0]):]
to_reassign[indices_dont_reassign] = False
n_reassigns = to_reassign.sum()
if n_reassigns:
# Pick new clusters amongst observations with uniform probability
new_centers = random_state.choice(X.shape[0], replace=False,
size=n_reassigns)
if verbose:
print("[MiniBatchKMeans] Reassigning %i cluster centers."
% n_reassigns)
if sp.issparse(X) and not sp.issparse(centers):
assign_rows_csr(
X, new_centers.astype(np.intp, copy=False),
np.where(to_reassign)[0].astype(np.intp, copy=False),
centers)
else:
centers[to_reassign] = X[new_centers]
# reset counts of reassigned centers, but don't reset them too small
# to avoid instant reassignment. This is a pretty dirty hack as it
# also modifies the learning rates.
weight_sums[to_reassign] = np.min(weight_sums[~to_reassign])
# implementation for the sparse CSR representation completely written in
# cython
if sp.issparse(X):
return inertia, _mini_batch_update_csr(
X, sample_weight, x_squared_norms, centers, weight_sums,
nearest_center, old_center_buffer, compute_squared_diff)
# dense variant in mostly numpy (not as memory efficient though)
k = centers.shape[0]
squared_diff = 0.0
for center_idx in range(k):
# find points from minibatch that are assigned to this center
center_mask = nearest_center == center_idx
wsum = sample_weight[center_mask].sum()
if wsum > 0:
if compute_squared_diff:
old_center_buffer[:] = centers[center_idx]
# inplace remove previous count scaling
centers[center_idx] *= weight_sums[center_idx]
# inplace sum with new points members of this cluster
centers[center_idx] += \
np.sum(X[center_mask] *
sample_weight[center_mask, np.newaxis], axis=0)
# unit-normalize for spherical k-means
centers[center_idx] = normalize(centers[center_idx, None])[:, 0]
# update the squared diff if necessary
if compute_squared_diff:
diff = centers[center_idx].ravel() - old_center_buffer.ravel()
squared_diff += np.dot(diff, diff)
return inertia, squared_diff
class MiniBatchSphericalKMeans(MiniBatchKMeans):
def fit(self, X, y=None, sample_weight=None):
"""Compute the centroids on X by chunking it into mini-batches.
Parameters
----------
X : array-like or sparse matrix, shape=(n_samples, n_features)
Training instances to cluster. It must be noted that the data
will be converted to C ordering, which will cause a memory copy
if the given data is not C-contiguous.
y : Ignored
Not used, present here for API consistency by convention.
sample_weight : array-like, shape (n_samples,), optional
The weights for each observation in X. If None, all observations
are assigned equal weight (default: None).
Returns
-------
self
"""
random_state = check_random_state(self.random_state)
# unit-normalize for spherical k-means
X = normalize(X)
X = check_array(X, accept_sparse="csr", order='C',
dtype=[np.float64, np.float32])
n_samples, n_features = X.shape
if n_samples < self.n_clusters:
raise ValueError("n_samples=%d should be >= n_clusters=%d"
% (n_samples, self.n_clusters))
sample_weight = _check_normalize_sample_weight(sample_weight, X)
n_init = self.n_init
if hasattr(self.init, '__array__'):
self.init = np.ascontiguousarray(self.init, dtype=X.dtype)
if n_init != 1:
warnings.warn(
'Explicit initial center position passed: '
'performing only one init in MiniBatchKMeans instead of '
'n_init=%d'
% self.n_init, RuntimeWarning, stacklevel=2)
n_init = 1
x_squared_norms = row_norms(X, squared=True)
if self.tol > 0.0:
tol = _tolerance(X, self.tol)
# using tol-based early stopping needs the allocation of a
# dedicated before which can be expensive for high dim data:
# hence we allocate it outside of the main loop
old_center_buffer = np.zeros(n_features, dtype=X.dtype)
else:
tol = 0.0
# no need for the center buffer if tol-based early stopping is
# disabled
old_center_buffer = np.zeros(0, dtype=X.dtype)
distances = np.zeros(self.batch_size, dtype=X.dtype)
n_batches = int(np.ceil(float(n_samples) / self.batch_size))
n_iter = int(self.max_iter * n_batches)
init_size = self.init_size
if init_size is None:
init_size = 3 * self.batch_size
if init_size > n_samples:
init_size = n_samples
self.init_size_ = init_size
validation_indices = random_state.randint(0, n_samples, init_size)
X_valid = X[validation_indices]
sample_weight_valid = sample_weight[validation_indices]
x_squared_norms_valid = x_squared_norms[validation_indices]
# perform several inits with random sub-sets
best_inertia = None
for init_idx in range(n_init):
if self.verbose:
print("Init %d/%d with method: %s"
% (init_idx + 1, n_init, self.init))
weight_sums = np.zeros(self.n_clusters, dtype=sample_weight.dtype)
# TODO: once the `k_means` function works with sparse input we
# should refactor the following init to use it instead.
# Initialize the centers using only a fraction of the data as we
# expect n_samples to be very large when using MiniBatchKMeans
cluster_centers = _init_centroids(
X, self.n_clusters, self.init,
random_state=random_state,
x_squared_norms=x_squared_norms,
init_size=init_size)
cluster_centers = normalize(cluster_centers)
# Compute the label assignment on the init dataset
_mini_batch_step(
X_valid, sample_weight_valid,
x_squared_norms[validation_indices], cluster_centers,
weight_sums, old_center_buffer, False, distances=None,
verbose=self.verbose)
cluster_centers = normalize(cluster_centers)
# Keep only the best cluster centers across independent inits on
# the common validation set
_, inertia = _labels_inertia(X_valid, sample_weight_valid,
x_squared_norms_valid,
cluster_centers)
if self.verbose:
print("Inertia for init %d/%d: %f"
% (init_idx + 1, n_init, inertia))
if best_inertia is None or inertia < best_inertia:
self.cluster_centers_ = cluster_centers
self.counts_ = weight_sums
best_inertia = inertia
# Empty context to be used inplace by the convergence check routine
convergence_context = {}
# Perform the iterative optimization until the final convergence
# criterion
for iteration_idx in range(n_iter):
# Sample a minibatch from the full dataset
minibatch_indices = random_state.randint(
0, n_samples, self.batch_size)
# Perform the actual update step on the minibatch data
self.cluster_centers_ = normalize(self.cluster_centers_)
batch_inertia, centers_squared_diff = _mini_batch_step(
X[minibatch_indices], sample_weight[minibatch_indices],
x_squared_norms[minibatch_indices],
self.cluster_centers_, self.counts_,
old_center_buffer, tol > 0.0, distances=distances,
# Here we randomly choose whether to perform
# random reassignment: the choice is done as a function
# of the iteration index, and the minimum number of
# counts, in order to force this reassignment to happen
# every once in a while
random_reassign=((iteration_idx + 1)
% (10 + int(self.counts_.min())) == 0),
random_state=random_state,
reassignment_ratio=self.reassignment_ratio,
verbose=self.verbose)
self.cluster_centers_ = normalize(self.cluster_centers_)
# Monitor convergence and do early stopping if necessary
if _mini_batch_convergence(
self, iteration_idx, n_iter, tol, n_samples,
centers_squared_diff, batch_inertia, convergence_context,
verbose=self.verbose):
break
self.n_iter_ = iteration_idx + 1
if self.compute_labels:
self.labels_, self.inertia_ = \
self._labels_inertia_minibatch(X, sample_weight)
return self
def partial_fit(self, X, y=None, sample_weight=None):
"""Update k means estimate on a single mini-batch X.
Parameters
----------
X : array-like of shape (n_samples, n_features)
Coordinates of the data points to cluster. It must be noted that
X will be copied if it is not C-contiguous.
y : Ignored
Not used, present here for API consistency by convention.
sample_weight : array-like, shape (n_samples,), optional
The weights for each observation in X. If None, all observations
are assigned equal weight (default: None).
Returns
-------
self
"""
X = check_array(X, accept_sparse="csr", order="C",
dtype=[np.float64, np.float32])
n_samples, n_features = X.shape
if hasattr(self.init, '__array__'):
self.init = np.ascontiguousarray(self.init, dtype=X.dtype)
if n_samples == 0:
return self
# unit-normalize for spherical k-means
X = normalize(X)
sample_weight = _check_normalize_sample_weight(sample_weight, X)
x_squared_norms = row_norms(X, squared=True)
self.random_state_ = getattr(self, "random_state_",
check_random_state(self.random_state))
if (not hasattr(self, 'counts_')
or not hasattr(self, 'cluster_centers_')):
# this is the first call partial_fit on this object:
# initialize the cluster centers
self.cluster_centers_ = _init_centroids(
X, self.n_clusters, self.init,
random_state=self.random_state_,
x_squared_norms=x_squared_norms, init_size=self.init_size)
self.counts_ = np.zeros(self.n_clusters,
dtype=sample_weight.dtype)
random_reassign = False
distances = None
else:
# The lower the minimum count is, the more we do random
# reassignment, however, we don't want to do random
# reassignment too often, to allow for building up counts
random_reassign = self.random_state_.randint(
10 * (1 + self.counts_.min())) == 0
distances = np.zeros(X.shape[0], dtype=X.dtype)
self.cluster_centers_ = normalize(self.cluster_centers_)
_mini_batch_spherical_step(X, sample_weight, x_squared_norms,
self.cluster_centers_, self.counts_,
np.zeros(0, dtype=X.dtype), 0,
random_reassign=random_reassign, distances=distances,
random_state=self.random_state_,
reassignment_ratio=self.reassignment_ratio,
verbose=self.verbose)
self.cluster_centers_ = normalize(self.cluster_centers_)
if self.compute_labels:
self.labels_, self.inertia_ = _labels_inertia(
X, sample_weight, x_squared_norms, self.cluster_centers_)
return self