generated from eliahuhorwitz/Academic-project-page-template
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate.py
187 lines (153 loc) · 5.18 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
import sys
import argparse
import os
import yaml
import contextlib
from tools.read_yaml import *
sys.path.append(os.getcwd())
from benchmarks.base_eval_dataset import load_dataset
from file_utils.result_file_manage import ResultFileManager
from models.base_model import AVAILABLE_MODELS, load_model
from transformers import set_seed
set_seed(555)
def get_info(info):
if "name" not in info:
raise ValueError("Model name is not specified.")
name = info["name"]
# info.pop("name")
return name, info
def load_models(model_infos):
for model_info in model_infos:
name, info = get_info(model_info)
model = load_model(name, info)
yield model
def load_datasets(dataset_infos):
for dataset_info in dataset_infos:
name, info = get_info(dataset_info)
dataset = load_dataset(name, info)
yield dataset
class DualOutput:
def __init__(self, file, stdout):
self.file = file
self.stdout = stdout
def write(self, data):
self.file.write(data)
self.stdout.write(data)
def flush(self):
self.file.flush()
self.stdout.flush()
if __name__ == "__main__":
args = argparse.ArgumentParser()
args.add_argument(
"--models",
type=str,
nargs="?",
help="lmm model to use",
default='llama_adapter,uniter,uniter_large',
)
args.add_argument(
"--datasets",
type=str,
nargs="?",
help="dataset to use",
default='vqa2,mscoco',
)
args.add_argument(
"--contrastive",
action="store_true",
help="State if you want use contrastive decoding. (Must be used with --alt-text option)",
default=False,
)
args.add_argument(
"--alt-text",
action="store_true",
help="State if you want use alt-text instead of image.",
default=False,
)
args.add_argument(
"--excel",
action="store_true",
help="Excel on/off",
default=False,
)
args.add_argument(
"--max_new_tokens",
type=int,
default=2048,
)
args.add_argument(
"--temperature",
type=float,
default=0.0,
)
args.add_argument(
"--num_beams",
type=int,
default=1,
)
args.add_argument(
"--do_sample",
action="store_true",
default=False,
)
args.add_argument(
"--top_p",
type=float,
default=1.0,
)
args.add_argument(
"--opera_decoding",
action="store_true",
default=False,
)
args.add_argument(
"--vcd_decoding",
action="store_true",
default=False,
)
args.add_argument(
"--cd_alpha",
type=float,
default=0.7,
)
args.add_argument(
"--continue_file",
type=str,
default="",
)
args.add_argument(
"--new_file",
action="store_true",
default=False,
)
phrased_args = args.parse_args()
model_names = phrased_args.models.split(",")
model_infos = [{"name": name, "temperature": phrased_args.temperature, "max_new_tokens": phrased_args.max_new_tokens, "contrastive": phrased_args.contrastive, "alt_text": phrased_args.alt_text, "excel": phrased_args.excel, "num_beams": phrased_args.num_beams, "do_sample": phrased_args.do_sample, "top_p": phrased_args.top_p, "cd_alpha": phrased_args.cd_alpha, "opera_decoding": phrased_args.opera_decoding, "vcd_decoding": phrased_args.vcd_decoding} for name in model_names]
dataset_infos = [{"name": dataset_name} for dataset_name in phrased_args.datasets.split(",")]
if phrased_args.contrastive:
assert phrased_args.alt_text, "Argument CONTRASTIVE MUST be used with alt-text"
if phrased_args.vcd_decoding:
assert phrased_args.do_sample, "VCD decoding MUST be used with do_sample"
if not os.path.exists(get_log_folder()):
os.makedirs(get_log_folder())
for model_info in model_infos:
name = model_info["name"]
print("\nMODEL INFO:", model_info)
print("-" * 80)
dataset_count = 0
for data_idx, dataset_info in enumerate(dataset_infos):
dataset_name, _dataset_info = get_info(dataset_info)
result_file_manager = ResultFileManager(model_info["name"], dataset_name, phrased_args.continue_file, phrased_args.new_file)
model = load_model(model_info["name"], model_info)
dataset = load_dataset(dataset_name, _dataset_info)
model_info['name'] = name
dataset_count += 1
print('MODEL:', model.name, 'TEMPERATURE:', model.temperature, 'MAX_NEW_TOKENS:', model.max_new_tokens, 'NUM_BEAMS:', model.num_beams, 'TOP_P:', model.top_p, 'DO_SAMPLE:', model.do_sample, 'CONTRASTIVE', model.contrastive, 'OPERA', model.opera_decoding)
print(f"\nDATASET: {dataset.name}")
print("-" * 20)
dataset.evaluate(model, result_file_manager) # Assuming this function now prints results directly.
print()
print("-" * 80)
print(f"Total Datasets Evaluated: {dataset_count}\n")
print("=" * 80)
# python evaluate.py --models llava --datasets mmbench