-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathstar_caller.py
562 lines (522 loc) · 18 KB
/
star_caller.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
#!/usr/bin/env python3
#
# Cyrius: CYP2D6 genotyper
# Copyright (c) 2019-2020 Illumina, Inc.
#
# Author: Xiao Chen <xchen2@illumina.com>
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
import os
import sys
import argparse
import json
import logging
import datetime
from collections import namedtuple, OrderedDict
import pysam
from depth_calling.snp_count import (
get_supporting_reads,
get_supporting_reads_single_region,
get_fraction,
get_snp_position,
)
from depth_calling.gmm import Gmm
from depth_calling.utilities import (
parse_gmm_file,
parse_region_file,
open_alignment_file,
)
from depth_calling.bin_count import (
get_normed_depth,
get_normed_depth_from_count,
get_read_length,
)
from caller.call_variants import (
NOISY_VAR,
call_cn_snp,
call_cn_var,
call_cn_var_homo,
get_allele_counts_var42128936,
update_var42128936,
get_called_variants,
call_exon9gc,
call_var42126938,
call_var42127526_var42127556,
call_var42127803hap,
)
from caller.cnv_hybrid import get_cnvtag
from caller.construct_star_table import get_hap_table
from caller.match_star_allele import match_star
MAD_THRESHOLD = 0.11
EXON9_SITE1 = 7
EXON9_SITE2 = 8
HIGH_CN_DEPTH_THRESHOLD = 7.5
HAPLOTYPE_VAR = ["g.42126938C>T", "g.42127803C>T", "g.42127526C>T_g.42127556T>C"]
resource_info = namedtuple(
"resource_info",
"genome gmm_parameter region_dic snp_db var_db var_homo_db haplotype_db var_list star_combinations",
)
exon9_values = namedtuple(
"exon9_values", "exon9_cn exon9cn_in_consensus exon9_raw_site1 exon9_raw_site2"
)
# Below are the SV configurations that the caller is able to call
CNV_ACCEPTED = [
"star5_star5",
"star13_star13",
"star13intron1_star13intron1",
"star5",
"star13",
"star13intron1",
"star5_star5_star68",
"star5_star68",
"cn2",
"exon9hyb_star5",
"dup_star13",
"dup_star13intron1",
"star13_star68",
"cn3",
"exon9hyb",
"star68",
"cn4",
"exon9hyb_exon9hyb",
"star68_star68",
"dup_exon9hyb",
"dup_star68",
"exon9hyb_star68",
"cn5",
"exon9hyb_exon9hyb_exon9hyb",
"star68_star68_star68",
"cn6",
"exon9hyb_exon9hyb_exon9hyb_exon9hyb",
"star68_star68_star68_star68",
]
def load_parameters():
"""Return parameters."""
parser = argparse.ArgumentParser(
description="Call CYP2D6 genotypes from a WGS BAM file."
)
parser.add_argument(
"-m",
"--manifest",
help="Manifest listing absolute paths to BAM/CRAM files",
required=True,
)
parser.add_argument(
"-g",
"--genome",
help="Reference genome, select from 19, 37, or 38",
required=True,
)
parser.add_argument("-o", "--outDir", help="Output directory", required=True)
parser.add_argument("-p", "--prefix", help="Prefix to output file", required=True)
parser.add_argument(
"-t",
"--threads",
help="Optional, number of threads to use. Default is 1",
type=int,
required=False,
default=1,
)
parser.add_argument(
"--countFilePath", help="Optional path to count files", required=False
)
parser.add_argument(
"-r",
"--reference",
help="Optional path to reference fasta file for CRAM",
required=False,
)
args = parser.parse_args()
if args.genome not in ["19", "37", "38"]:
raise Exception("Genome not recognized. Select from 19, 37, or 38")
return args
def d6_star_caller(
bam, call_parameters, threads, count_file=None, reference_fasta=None, index_name=None
):
"""Return CYP2D6 star allele diplotype calls for each sample."""
d6_call = namedtuple(
"d6_call",
"Coverage_MAD Median_depth Total_CN Spacer_CN Total_CN_raw \
Spacer_CN_raw Variants_called CNV_group Genotype Filter Raw_star_allele \
Call_info Exon9_CN CNV_consensus d67_snp_call d67_snp_raw \
Variant_raw_count",
)
# 1. Read counting and normalization
bamfile = open_alignment_file(bam, reference_fasta, index_filename=index_name)
if count_file is not None:
reads = bamfile.fetch()
read_length = get_read_length(reads)
normalized_depth = get_normed_depth_from_count(
count_file, call_parameters.region_dic, read_length
)
else:
normalized_depth = get_normed_depth(
bam, call_parameters.region_dic, threads, reference=reference_fasta
)
# no-call after normalizaton
if normalized_depth.normalized["d67"] is None:
sample_call = d6_call(
normalized_depth.mad,
normalized_depth.mediandepth,
None,
None,
None,
None,
None,
None,
None,
None,
None,
None,
None,
None,
None,
None,
None,
)
return sample_call
# 2. GMM and CN call
# There are two regions to call CN based on depth: total CYP2D6+CYP2D7, and CYP2D7 spacer region
cn_call = namedtuple("cn_call", "d67_cn d67_depth spacer_cn spacer_depth")
gmm_d67 = Gmm()
gmm_d67.set_gmm_par(call_parameters.gmm_parameter, "d67")
gcall_d67 = gmm_d67.gmm_call(normalized_depth.normalized["d67"])
gmm_spacer = Gmm()
gmm_spacer.set_gmm_par(call_parameters.gmm_parameter, "spacer")
gcall_spacer = gmm_spacer.gmm_call(normalized_depth.normalized["spacer"])
high_cn_low_confidence = False
if gcall_d67.cn is None and gcall_d67.depth_value > HIGH_CN_DEPTH_THRESHOLD:
high_cn_low_confidence = True
raw_cn_call = cn_call(
int(round(gcall_d67.depth_value)),
gcall_d67.depth_value,
gcall_spacer.cn,
gcall_spacer.depth_value,
)
else:
raw_cn_call = cn_call(
gcall_d67.cn,
gcall_d67.depth_value,
gcall_spacer.cn,
gcall_spacer.depth_value,
)
# 3. Get allele counts at D6/D7 SNP (base difference) sites and target variant sites
# D6/D7 base difference sites. Get read counts at both D6/D7 positions.
snp_db = call_parameters.snp_db
snp_d6, snp_d7 = get_supporting_reads(
bamfile, snp_db.dsnp1, snp_db.dsnp2, snp_db.nchr, snp_db.dindex
)
# Variants not in homology regions. Get read counts only at D6 positions.
var_db = call_parameters.var_db
var_alt, var_ref, var_alt_forward, var_alt_reverse = get_supporting_reads_single_region(
bamfile, var_db.dsnp1, var_db.nchr, var_db.dindex
)
# Look more carefully for insertions at 42128936 from reads
var_list = call_parameters.var_list
ref_read, long_ins_read, short_ins_read = get_allele_counts_var42128936(
bamfile, call_parameters.genome
)
var_alt, var_ref = update_var42128936(
var_list, var_alt, var_ref, ref_read, long_ins_read, short_ins_read
)
# Variants in homology regions. Get read counts at both D6/D7 positions.
var_homo_db = call_parameters.var_homo_db
var_homo_alt, var_homo_ref = get_supporting_reads(
bamfile,
var_homo_db.dsnp1,
var_homo_db.dsnp2,
var_homo_db.nchr,
var_homo_db.dindex,
)
# This ordered dictionary is for final reporting.
raw_count = OrderedDict()
non_homology_variant_count = len(var_alt)
for i in range(len(call_parameters.var_list)):
if i < non_homology_variant_count:
if var_list[i] in NOISY_VAR:
raw_count.setdefault(
var_list[i],
"%i(%i:%i),%i"
% (var_alt[i], var_alt_forward[i], var_alt_reverse[i], var_ref[i]),
)
else:
raw_count.setdefault(var_list[i], "%i,%i" % (var_alt[i], var_ref[i]))
else:
raw_count.setdefault(
var_list[i],
"%i,%i"
% (
var_homo_alt[i - non_homology_variant_count],
var_homo_ref[i - non_homology_variant_count],
),
)
# no-call due to total copy number calling
if raw_cn_call.d67_cn is None:
sample_call = d6_call(
normalized_depth.mad,
normalized_depth.mediandepth,
raw_cn_call.d67_cn,
raw_cn_call.spacer_cn,
raw_cn_call.d67_depth,
raw_cn_call.spacer_depth,
None,
None,
None,
None,
None,
None,
None,
None,
None,
None,
raw_count,
)
return sample_call
# 4. Call CNV and hybrids
d6_fraction = get_fraction(snp_d6, snp_d7)
raw_d6_cn = [round(raw_cn_call.d67_cn * a, 3) for a in d6_fraction]
cn_call_snp = call_cn_snp(raw_cn_call.d67_cn, snp_d6, snp_d7)
# exon9gc
exon9gc_call_stringent = call_exon9gc(
snp_d6[EXON9_SITE1 : EXON9_SITE2 + 1],
snp_d7[EXON9_SITE1 : EXON9_SITE2 + 1],
raw_cn_call.d67_cn,
)
cnvtag, consensus = get_cnvtag(
raw_cn_call.d67_cn,
raw_d6_cn,
cn_call_snp,
exon9gc_call_stringent,
raw_cn_call.spacer_cn,
)
# no-call due to CNV group calling
if cnvtag is None or cnvtag not in CNV_ACCEPTED:
sample_call = d6_call(
normalized_depth.mad,
normalized_depth.mediandepth,
raw_cn_call.d67_cn,
raw_cn_call.spacer_cn,
raw_cn_call.d67_depth,
raw_cn_call.spacer_depth,
None,
cnvtag,
None,
None,
None,
None,
exon9gc_call_stringent,
",".join(str(a) for a in consensus),
",".join(str(a) for a in cn_call_snp),
",".join(str(a) for a in raw_d6_cn),
raw_count,
)
return sample_call
# 5. Call variants
# homology region
cn_call_var_homo = call_cn_var_homo(raw_cn_call.d67_cn, var_homo_alt, var_homo_ref)
# non-homology region
cn_call_var = call_cn_var(
cnvtag, var_alt, var_ref, var_alt_forward, var_alt_reverse, var_list, var_db
)
# call haplotypes
haplotype_db = call_parameters.haplotype_db
site42126938_count, var42126938, var42126938_G_haplotype = call_var42126938(
bamfile, raw_cn_call.d67_cn, haplotype_db["g.42126938C>T"]
)
raw_count.setdefault(
"g.42126938C>T", "%i,%i" % (site42126938_count[1], site42126938_count[0])
)
site42127526_count, site42127556_count, var42127526 = call_var42127526_var42127556(
bamfile, cnvtag, haplotype_db["g.42127526C>T_g.42127556T>C"]
)
raw_count.setdefault(
"g.42127526C>T", "%i,%i" % (site42127526_count[1], site42127526_count[0])
)
raw_count.setdefault(
"g.42127556T>C", "%i,%i" % (site42127556_count[1], site42127556_count[0])
)
var42127803_diff_haplotype = call_var42127803hap(
bamfile, cnvtag, haplotype_db["g.42127803C>T"]
)
# 6. Call star allele
total_callset = get_called_variants(var_list, cn_call_var)
called_var_homo = get_called_variants(var_list, cn_call_var_homo, len(cn_call_var))
total_callset += called_var_homo
total_callset += var42126938
total_callset += var42127526
star_called = match_star(
total_callset,
cnvtag,
raw_cn_call.spacer_cn,
call_parameters.star_combinations,
exon9_values(
exon9gc_call_stringent,
consensus.exon9_and_downstream,
raw_d6_cn[EXON9_SITE1],
raw_d6_cn[EXON9_SITE2],
),
var42126938_G_haplotype,
var42127803_diff_haplotype,
)
genotype_filter = None
final_star_allele_call = None
# no-call due to star allele matching
if star_called.call_info and star_called.call_info != "no_match":
final_star_allele_call = star_called.clean_call
if final_star_allele_call:
if ";" in final_star_allele_call:
genotype_filter = "More_than_one_possible_genotype"
elif "/" not in final_star_allele_call:
genotype_filter = "Not_assigned_to_haplotypes"
elif high_cn_low_confidence:
genotype_filter = "LowQ_high_CN"
else:
genotype_filter = "PASS"
sample_call = d6_call(
normalized_depth.mad,
normalized_depth.mediandepth,
raw_cn_call.d67_cn,
raw_cn_call.spacer_cn,
raw_cn_call.d67_depth,
raw_cn_call.spacer_depth,
star_called.variants_called.split(),
cnvtag,
final_star_allele_call,
genotype_filter,
star_called.raw_call,
star_called.call_info,
exon9gc_call_stringent,
",".join(str(a) for a in consensus),
",".join(str(a) for a in cn_call_snp),
",".join(str(a) for a in raw_d6_cn),
raw_count,
)
bamfile.close()
return sample_call
def prepare_resource(datadir, parameters):
genome = parameters.genome
region_file = os.path.join(datadir, "CYP2D6_region_%s.bed" % genome)
snp_file = os.path.join(datadir, "CYP2D6_SNP_%s.txt" % genome)
gmm_file = os.path.join(datadir, "CYP2D6_gmm.txt")
star_table = os.path.join(datadir, "star_table.txt")
variant_file = os.path.join(datadir, "CYP2D6_target_variant_%s.txt" % genome)
variant_homology_file = os.path.join(
datadir, "CYP2D6_target_variant_homology_region_%s.txt" % genome
)
haplotype_file = os.path.join(datadir, "CYP2D6_haplotype_%s.txt" % genome)
star_combinations = get_hap_table(star_table)
for required_file in [
region_file,
snp_file,
variant_file,
variant_homology_file,
haplotype_file,
gmm_file,
]:
if os.path.exists(required_file) == 0:
raise Exception("File %s not found." % required_file)
snp_db = get_snp_position(snp_file)
var_db = get_snp_position(variant_file)
var_homo_db = get_snp_position(variant_homology_file)
haplotype_db = {}
for variant in HAPLOTYPE_VAR:
haplotype_db.setdefault(variant, get_snp_position(haplotype_file, variant))
var_list = []
with open(variant_file) as f:
for line in f:
if line[0] != "#":
var_name = line.split()[-1]
var_list.append(var_name)
with open(variant_homology_file) as f:
for line in f:
if line[0] != "#":
var_name = line.split()[-1]
var_list.append(var_name)
gmm_parameter = parse_gmm_file(gmm_file)
region_dic = parse_region_file(region_file)
call_parameters = resource_info(
genome,
gmm_parameter,
region_dic,
snp_db,
var_db,
var_homo_db,
haplotype_db,
var_list,
star_combinations,
)
return call_parameters
def main():
parameters = load_parameters()
manifest = parameters.manifest
outdir = parameters.outDir
prefix = parameters.prefix
reference_fasta = parameters.reference
threads = parameters.threads
path_count_file = parameters.countFilePath
logging.basicConfig(level=logging.DEBUG)
if os.path.exists(outdir) == 0:
os.makedirs(outdir)
# Prepare data files
datadir = os.path.join(os.path.dirname(__file__), "data")
call_parameters = prepare_resource(datadir, parameters)
out_json = os.path.join(outdir, prefix + ".json")
out_tsv = os.path.join(outdir, prefix + ".tsv")
final_output = {}
with open(manifest) as read_manifest:
for line in read_manifest:
bam_name = line.strip()
index_name = None
if '##idx##' in bam_name:
bam_name, index_name = bam_name.split('##idx##')
sample_id = os.path.splitext(os.path.basename(bam_name))[0]
count_file = None
if path_count_file is not None:
count_file = os.path.join(path_count_file, sample_id + "_count.txt")
if "://" not in bam_name and os.path.exists(bam_name) == 0:
logging.warning("Input file for sample %s does not exist.", sample_id)
else:
logging.info(
"Processing sample %s at %s", sample_id, datetime.datetime.now()
)
cyp2d6_call = d6_star_caller(
bam_name, call_parameters, threads, count_file, reference_fasta, index_name=index_name
)._asdict()
# Use normalized coverage MAD across stable regions
# as a sample QC measure.
if cyp2d6_call["Coverage_MAD"] > MAD_THRESHOLD:
logging.warning(
"Sample %s has uneven coverage. CN calls may be unreliable.",
sample_id,
)
final_output.setdefault(sample_id, cyp2d6_call)
# Write to json
logging.info("Writing to json at %s", datetime.datetime.now())
with open(out_json, "w") as json_output:
json.dump(final_output, json_output)
# Write to tsv
logging.info("Writing to tsv at %s", datetime.datetime.now())
header = ["Sample", "Genotype", "Filter"]
with open(out_tsv, "w") as tsv_output:
tsv_output.write("\t".join(header) + "\n")
for sample_id in final_output:
final_call = final_output[sample_id]
output_per_sample = [
sample_id,
final_call["Genotype"],
final_call["Filter"],
]
tsv_output.write("\t".join(str(a) for a in output_per_sample) + "\n")
if __name__ == "__main__":
main()