-
Notifications
You must be signed in to change notification settings - Fork 0
/
hmri_local_defaults.m
428 lines (393 loc) · 22.1 KB
/
hmri_local_defaults.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
function hmri_local_defaults
% Sets the defaults parameters which are used by the hMRI toolbox.
%!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
% DON'T MODIFY THIS FILE, IT CONTAINS THE REFERENCE DEFAULTS PARAMETERS.
% Please refer to hMRI-Toolbox\config\local\hmri_local_defaults.m to
% customise defaults parameters.
%!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
%
% FORMAT hmri_defaults
%__________________________________________________________________________
%
% THIS FILE SHOULD NOT BE MODIFIED.
% To customize the hMRI-Toolbox defaults parameters so they match your own
% site- or protocol-specific setup, please refer to the defaults files in
% hMRI-Toolbox\config\local. In particular, use "hmri_local_defaults.m".
% Make a copy with meaningful name, modify as desired and select as general
% defaults file in the "Configure toolbox" branch of the hMRI-Toolbox.
%
% The structure and content of this file are largely inspired by the
% equivalent file in SPM.
%
% DOCUMENTATION
% A brief description of each parameter is provided together with
% guidelines and recommendations to modify these parameters. With few
% exceptions, parameters should ONLY be MODIFIED and customized BY ADVANCED
% USERS, having a good knowledge of the underlying algorithms and
% implementation. Please refer to the documentation in the github WIKI for
% more details.
%__________________________________________________________________________
% Copyright (C) 2013 Wellcome Trust Centre for Neuroimaging
% Written by C. Phillips, 2013.
% Cyclotron Research Centre, University of Liege, Belgium
% Global hmri_def variable used across the whole toolbox
global hmri_def
% Specifying the research centre - to be customized in the local
% configuration file (config/local/hmri_local_defaults.m). Not mandatory.
hmri_def.centre = 'centre' ;
% Defaults customised defaults file location
hmri_def.local_defaults = {fullfile(fileparts(mfilename('fullpath')),'local','hmri_local_defaults.m')};
%==========================================================================
% Common processing parameters
%==========================================================================
% cleanup temporary directories. If set to true, all temporary directories
% are deleted at the end of map creation, only the "Results" directory and
% "Supplementary" subdirectory are kept. Setting "cleanup" to "false" might
% be convenient if one desires to have a closer look at intermediate
% processing steps. Otherwise "cleanup = true" is recommended for saving
% disk space.
hmri_def.cleanup = false;
% settings for JSON metadata: by default, separate JSON files are used to
% store the metadata (information on data acquisition and processing,
% tracking of input and output files), as JSON-formatted, tab-indented
% text. The following settings are recommended. No modification currently
% foreseen as useful...
hmri_def.json = struct('extended',false,'separate',true,'anonym','none',...
'overwrite',true, 'indent','\t');
% recommended TPM for segmentation and spatial processing. The hMRI toolbox
% provides a series of tissue probability maps. These TPMs could be
% replaced by other TPMs, to better match the population studied.
% ADVANCED USER ONLY.
%hmri_def.TPM = fullfile(fileparts(fileparts(fileparts(mfilename('fullpath')))),'etpm','eTPM.nii');
% default template for auto-reorientation. The template can be selected
% within the Auto-reorient module. The following is the default suggested
% for T1w images. Please refer to the Auto-reorient documentation for an
% appropriate choice of the template.
%hmri_def.autoreorient_template = {fullfile(spm('dir'),'canonical','avg152T1.nii')};
%==========================================================================
% Default parameters for segmentation
% ADVANCED USERS ONLY!
% hmri_def.segment is effectively the job to be handed to spm_preproc_run
% By default, parameters are set to
% - create tissue class images (c*) in the native space of the source image
% (tissue(*).native = [1 0]) for tissue classes 1-5
% - save both BiasField and BiasCorrected volume (channel.write = [1 1])
% - recommended values from SPM12 (October 2017)
%==========================================================================
% hmri_def.segment.channel.vols = cell array of file names,
% must be defined before calling spm_preproc_run
hmri_def.segment.channel.biasreg = 0.001;
hmri_def.segment.channel.biasfwhm = 60;
% hmri_def.segment.channel.write = [0 0]; % save nothing
% hmri_def.segment.channel.write = [1 0]; % save BiasField
% hmri_def.segment.channel.write = [0 1]; % save BiasCorrected volume
hmri_def.segment.channel.write = [1 1]; % save BiasField and BiasCorrected volume
hmri_def.segment.tissue(1).tpm = {[hmri_def.TPM ',1']};
hmri_def.segment.tissue(1).ngaus = 1;
hmri_def.segment.tissue(1).native = [1 0];
hmri_def.segment.tissue(1).warped = [0 0];
hmri_def.segment.tissue(2).tpm = {[hmri_def.TPM ',2']};
hmri_def.segment.tissue(2).ngaus = 1;
hmri_def.segment.tissue(2).native = [1 0];
hmri_def.segment.tissue(2).warped = [0 0];
hmri_def.segment.tissue(3).tpm = {[hmri_def.TPM ',3']};
hmri_def.segment.tissue(3).ngaus = 2;
hmri_def.segment.tissue(3).native = [1 0];
hmri_def.segment.tissue(3).warped = [0 0];
hmri_def.segment.tissue(4).tpm = {[hmri_def.TPM ',4']};
hmri_def.segment.tissue(4).ngaus = 3;
hmri_def.segment.tissue(4).native = [1 0];
hmri_def.segment.tissue(4).warped = [0 0];
hmri_def.segment.tissue(5).tpm = {[hmri_def.TPM ',5']};
hmri_def.segment.tissue(5).ngaus = 4;
hmri_def.segment.tissue(5).native = [1 0];
hmri_def.segment.tissue(5).warped = [0 0];
hmri_def.segment.tissue(6).tpm = {[hmri_def.TPM ',6']};
hmri_def.segment.tissue(6).ngaus = 2;
hmri_def.segment.tissue(6).native = [0 0];
hmri_def.segment.tissue(6).warped = [0 0];
hmri_def.segment.warp.mrf = 1;
hmri_def.segment.warp.cleanup = 1;
hmri_def.segment.warp.reg = [0 0.001 0.5 0.05 0.2];
hmri_def.segment.warp.affreg = 'mni';
hmri_def.segment.warp.fwhm = 0;
hmri_def.segment.warp.samp = 3;
hmri_def.segment.warp.write = [0 0];
%==========================================================================
% R1/PD/R2s/MT map creation parameters
%==========================================================================
%--------------------------------------------------------------------------
% Coregistration of all input images to the average (or TE=0 fit) PDw image
%--------------------------------------------------------------------------
% The coregistration step can be disabled using the following flag (not
% recommended). ADVANCED USER ONLY.
hmri_def.coreg2PDw = false;
%--------------------------------------------------------------------------
% Ordinary Least Squares & fit at TE=0
%--------------------------------------------------------------------------
% create an Ordinary Least Squares R2* map. The ESTATICS model is applied
% to calculate R2* map from all available contrasts.
% ADVANCED USER ONLY.
hmri_def.R2sOLS = 1;
% Minimum number of echoes to calculate R2s map. Strictly speaking, the
% minimum is 2. For a robust estimation, the minimum number of echoes
% required depends on many factors, amongst which:
% - SNR/resolution
% - distribution/spacing between TEs: note that early echoes are more
% affected by the specific contrast, violating the assumption of a common
% decay between contrasts.
% - number of contrasts available (fewer echoes per contrast required for 3
% (PDw, T1w, MTw) contrasts as compared to 2 or even 1)
% To be on the safe side, a minimum of 6 echoes is recommended (ESTATICS
% paper). Further studies are required to come up with more detailed and
% informed guidelines. Use fewer echoes at your own risk...!
hmri_def.neco4R2sfit = 4;
% Define a coherent interpolation factor used all through the map creation
% process. Default is 3, but if you want to keep SNR and resolution as far
% as possible the same, it is recommended to use sinc interpolation (at
% least -4, in Siawoosh's experience -7 gives decent results).
% ADVANCED USER ONLY.
hmri_def.interp = 3;
% Define the OLS fit as default. OLS fit at TE=0 for each contrast is used
% instead of averaged contrast images for the map calculation.
% ADVANCED USER ONLY.
hmri_def.fullOLS = true;
%--------------------------------------------------------------------------
% Usage of UNICORT-derived B1 maps for PD and/or MT maps calculation
% ADVANCED USER ONLY.
% WARNING: this method has not been validated for PD and MT calculation!
%--------------------------------------------------------------------------
hmri_def.UNICORT.PD = false;
hmri_def.UNICORT.MT = false;
%--------------------------------------------------------------------------
% PD maps processing parameters
% ADVANCED USER ONLY.
%--------------------------------------------------------------------------
hmri_def.PDproc.calibr = 1; % Calibration of the PD map (if PDw, T1w,
% B1map available and RF sensitivity bias correction applied somehow)
% based on PD(WM) = 69% [Tofts 2003].
hmri_def.PDproc.WBMaskTh = 0.1; % Threshold for calculation of whole-brain mask from TPMs
hmri_def.PDproc.WMMaskTh = 0.95; % Threshold for calculation of white-matter mask from TPMs
hmri_def.PDproc.biasreg = 10^(-5);
hmri_def.PDproc.biasfwhm = 50;
hmri_def.PDproc.nr_echoes_forA = 6; % NOTE: in order to minimize R2* bias
% on the PD estimates and gain in robustness for bias-field
% correction, the number of echoes should be minimum ("average"
% calculated over the first echo only) for PD calculation. However,
% with T2*-weighting bias correction (see below), a higher number of
% echoes is preferred in order to provide good SNR. Note that when
% "fullOLS = true", this parameter has no impact whatsovever.
hmri_def.PDproc.T2scorr = 1; % to correct A map for T2*-weighting bias
% before PD map calculation. The correction is not required when
% "fullOLS = true" (TE=0 fit) and will be automatically disabled.
%--------------------------------------------------------------------------
% RF sensitivity bias correction: kernel for sensitivity map smoothing.
% ADVANCED USER ONLY.
%--------------------------------------------------------------------------
hmri_def.RFsens.smooth_kernel = 12;
%--------------------------------------------------------------------------
% quantitative maps: quality evaluation and realignment to MNI
%--------------------------------------------------------------------------
% creates a matlab structure containing markers of data quality
hmri_def.qMRI_maps.QA = 0;
% realigns qMRI maps to MNI: the following parameter corresponds to the
% realignment implemented as part of the map calculation (see
% hmri_create_MTProt.m). Left here for backward compatibility. It is
% STRONGLY RECOMMENDED to reorient all images prior any processing using
% the Auto-Reorient module provided with the toolbox (type "help
% hmri_autoreorient" for details or open the SPM > Tools > hMRI Tools >
% Auto-Reorient module in the Batch GUI). ADVANCED USER ONLY.
hmri_def.qMRI_maps.ACPCrealign = 0;
%--------------------------------------------------------------------------
% Threshold values for qMRI maps
% The thresholds are meant to discard outliers generally due to low SNR in
% some brain areas, leading to physical non-sense values. Thresholding is
% required to process further the maps generated, when e.g. used
% segmentation algorithms make assumptions incompatible with existing
% outliers.
% NOTE that thresholding modifies the signal distribution and may alter
% the statistical results.
% ADVANCED USER ONLY.
%--------------------------------------------------------------------------
hmri_def.qMRI_maps_thresh.R1 = 10000; % 1000*[s-1]
hmri_def.qMRI_maps_thresh.A = 10^5; % [a.u.] based on input images with intensities ranging approx. [0 4096].
hmri_def.qMRI_maps_thresh.R2s = 10; % 1000*[s-1]
hmri_def.qMRI_maps_thresh.MTR = 50;
hmri_def.qMRI_maps_thresh.MTR_synt = 50;
hmri_def.qMRI_maps_thresh.MT = 5; % [p.u.]
%--------------------------------------------------------------------------
% MPM acquisition parameters and RF spoiling correction parameters
%--------------------------------------------------------------------------
% ACQUISITION PARAMETERS: these values are initialised with defaults (v2k
% protocol - Prisma) and are updated at run-time with actual acquisition
% values (see hmri_create_MTProt.m). If TR/TE/FA cannot be determined from
% the input images, the following values will be used. If they don't match
% your own protocol values and if no TR/TE/FA values can be retrieved by
% the toolbox from your data, the following values should be adapted in the
% local defaults file.
% ADVANCED USER ONLY
hmri_def.MPMacq.TE_mtw = [2.34:2.34:14.04]'; %#ok<*NBRAK> % [ms] defined as column vector!
hmri_def.MPMacq.TE_t1w = [2.34:2.34:18.72]'; % [ms]
hmri_def.MPMacq.TE_pdw = [2.34:2.34:18.72]'; % [ms]
hmri_def.MPMacq.TR_mtw = 24.5; % [ms]
hmri_def.MPMacq.TR_t1w = 24.5; % [ms]
hmri_def.MPMacq.TR_pdw = 24.5; % [ms]
hmri_def.MPMacq.fa_mtw = 6; % [deg]
hmri_def.MPMacq.fa_t1w = 21; % [deg]
hmri_def.MPMacq.fa_pdw = 6; % [deg]
hmri_def.MPMacq.tag = 'v2k';
% IMPREFECT RF SPOILING CORRECTION PARAMETERS
% (Preibisch and Deichmann, MRM 61:125-135 (2009))
% No run-time calculation of the correction parametes is currently
% performed in the toolbox. They've been calculated and stored here for a
% series of standard protocols, and are selected at run-time according to
% effective TR and FA values (more precisely: [TR_pdw TR_t1w fa_pdw
% fa_t1w]). If the used TR and FA values don't match any of the predefined
% types, no correction is applied. Additional protocol types and correction
% factors can be computed off-line (see more details below) and added to
% the local defaults file to apply proper RF correction.
% ADVANCED USER ONLY.
% A) Defining the MPMacq parameters distinguishing the different protocols
%--------------------------------------------------------------------------
% Using the following parameter order: [TR_pdw TR_t1w fa_pdw fa_t1w]
% NOTE: all tags MUST
% - start with a letter, and
% - include only letters, numbers or underscore, i.e. NO space.
% as these names are used to define a structure fieldname with the protocol
% parameters.
%
% 1) classic FIL protocol (Weiskopf et al., Neuroimage 2011):
% PD-weighted: TR=23.7ms; a=6deg; T1-weighted: TR=18.7ms; a=20deg
hmri_def.MPMacq_set.names{1} = 'Classic FIL protocol';
hmri_def.MPMacq_set.tags{1} = 'ClassicFIL';
hmri_def.MPMacq_set.vals{1} = [23.7 18.7 6 20];
% 2) new FIL/Helms protocol
% PD-weighted: TR=24.5ms; a=5deg; T1-weighted: TR=24.5ms; a=29deg
hmri_def.MPMacq_set.names{2} = 'New FIL/Helms protocol';
hmri_def.MPMacq_set.tags{2} = 'NewFILHelms';
hmri_def.MPMacq_set.vals{2} = [24.5 24.5 5 29];
% 3) Siemens product sequence protocol used in Lausanne (G Krueger)
% PD-weighted: TR=24ms; a=6deg; T1-weighted: TR=19ms; a=20deg
hmri_def.MPMacq_set.names{3} = 'Siemens product Lausanne (GK) protocol';
hmri_def.MPMacq_set.tags{3} = 'SiemPrLausGK';
hmri_def.MPMacq_set.vals{3} = [24.0 19.0 6 20];
% 4) High-res (0.8mm) FIL protocol:
% PD-weighted: TR=23.7ms; a=6deg; T1-weighted: TR=23.7ms; a=28deg
hmri_def.MPMacq_set.names{4} = 'High-res FIL protocol';
hmri_def.MPMacq_set.tags{4} = 'HResFIL';
hmri_def.MPMacq_set.vals{4} = [23.7 23.7 6 28];
% 5)NEW High-res (0.8mm) FIL protocol:
% PD-weighted: TR=25.25ms; a=5deg; T1-weighted: TR=TR=25.25ms; a=29deg
hmri_def.MPMacq_set.names{5} = 'New High-res FIL protocol';
hmri_def.MPMacq_set.tags{5} = 'NHResFIL';
hmri_def.MPMacq_set.vals{5} = [25.25 25.25 5 29];
% 6)NEW 1mm protocol - seq version v2k:
% PD-weighted: TR=24.5ms; a=6deg; T1-weighted: TR=24.5ms; a=21deg
hmri_def.MPMacq_set.names{6} = 'v2k protocol';
hmri_def.MPMacq_set.tags{6} = 'v2k';
hmri_def.MPMacq_set.vals{6} = [24.5 24.5 6 21];
% 7) 800um protocol - seq version v3* released used by MEG group:
% TR = 25ms for all volumes; flipAngles = [6, 21 deg] for PDw and T1w
% Correction parameters below were determined via Bloch-Torrey
% simulations but end result agrees well with EPG-derived correction
% for this RF spoiling increment of 137 degrees.
% See: Callaghan et al. ISMRM, 2015, #1694
hmri_def.MPMacq_set.names{7} = 'v3star protocol';
hmri_def.MPMacq_set.tags{7} = 'v3star';
hmri_def.MPMacq_set.vals{7} = [25 25 6 21];
% B) Defining the imperfect spoiling correction parameters for the
% different protocols
%--------------------------------------------------------------------------
% Antoine Lutti 15/01/09
% The following correction parameters are based on
% [Preibisch and Deichmann, Magn Reson Med 61:125-135 (2009)]. The values
% for P2_a and P2_b below were obtained using the code supplied by R.
% Deichmann with the experimental parameters used for the standard MPM
% protocol and assuming T2 = 64 ms at 3T.
% Given the possible confusion and resulting mistake (imperfect spoiling
% correction applied to the wrong sequence), when TR and FA values match
% one of the listed cases below, the option is disabled by default.
% When enabling the imperfect spoiling correction, make sure the
% coefficients retrieved in the list below are definitely calculated for
% the protocol used!
hmri_def.imperfectSpoilCorr.enabled = false;
% 1) classic FIL protocol (Weiskopf et al., Neuroimage 2011):
hmri_def.imperfectSpoilCorr.ClassicFIL.tag = 'Classic FIL protocol';
hmri_def.imperfectSpoilCorr.ClassicFIL.P2_a = [78.9228195006542,-101.113338489192,47.8783287525126];
hmri_def.imperfectSpoilCorr.ClassicFIL.P2_b = [-0.147476233142129,0.126487385091045,0.956824374979504];
hmri_def.imperfectSpoilCorr.ClassicFIL.enabled = hmri_def.imperfectSpoilCorr.enabled;
% 2) new FIL/Helms protocol
hmri_def.imperfectSpoilCorr.NewFILHelms.tag = 'New FIL/Helms protocol';
hmri_def.imperfectSpoilCorr.NewFILHelms.P2_a = [93.455034845930480,-120.5752858196904,55.911077913369060];
hmri_def.imperfectSpoilCorr.NewFILHelms.P2_b = [-0.167301931434861,0.113507432776106,0.961765216743606];
hmri_def.imperfectSpoilCorr.NewFILHelms.enabled = hmri_def.imperfectSpoilCorr.enabled;
% 3) Siemens product sequence protocol used in Lausanne (G Krueger)
hmri_def.imperfectSpoilCorr.SiemPrLausGK.tag = 'Siemens product Lausanne (GK) protocol';
hmri_def.imperfectSpoilCorr.SiemPrLausGK.P2_a = [67.023102027100880,-86.834117103841540,43.815818592349870];
hmri_def.imperfectSpoilCorr.SiemPrLausGK.P2_b = [-0.130876849571103,0.117721807209409,0.959180058389875];
hmri_def.imperfectSpoilCorr.SiemPrLausGK.enabled = hmri_def.imperfectSpoilCorr.enabled;
% 4) High-res (0.8mm) FIL protocol:
hmri_def.imperfectSpoilCorr.HResFIL.tag = 'High-res FIL protocol';
hmri_def.imperfectSpoilCorr.HResFIL.P2_a = [1.317257319014170e+02,-1.699833074433892e+02,73.372595677371650];
hmri_def.imperfectSpoilCorr.HResFIL.P2_b = [-0.218804328507184,0.178745853134922,0.939514554747592];
hmri_def.imperfectSpoilCorr.HResFIL.enabled = hmri_def.imperfectSpoilCorr.enabled;
% 5)NEW High-res (0.8mm) FIL protocol:
hmri_def.imperfectSpoilCorr.NHResFIL.tag = 'New High-res FIL protocol';
hmri_def.imperfectSpoilCorr.NHResFIL.P2_a = [88.8623036106612,-114.526218941363,53.8168602253166];
hmri_def.imperfectSpoilCorr.NHResFIL.P2_b = [-0.132904017579521,0.113959390779008,0.960799295622202];
hmri_def.imperfectSpoilCorr.NHResFIL.enabled = hmri_def.imperfectSpoilCorr.enabled;
% 6)NEW 1mm protocol - seq version v2k:
hmri_def.imperfectSpoilCorr.v2k.tag = 'v2k protocol';
hmri_def.imperfectSpoilCorr.v2k.P2_a = [71.2817617982844,-92.2992876164017,45.8278193851731];
hmri_def.imperfectSpoilCorr.v2k.P2_b = [-0.137859046784839,0.122423212397157,0.957642744668469];
hmri_def.imperfectSpoilCorr.v2k.enabled = hmri_def.imperfectSpoilCorr.enabled;
% 7) 800um protocol - seq version v3* released used by MEG group:
hmri_def.imperfectSpoilCorr.v3star.tag = 'v3star protocol';
hmri_def.imperfectSpoilCorr.v3star.P2_a = [57.427573706259864,-79.300742898810441,39.218584751863879];
hmri_def.imperfectSpoilCorr.v3star.P2_b = [-0.121114060111119,0.121684347499374,0.955987357483519];
hmri_def.imperfectSpoilCorr.v3star.enabled = hmri_def.imperfectSpoilCorr.enabled;
% Unknwon protocol
hmri_def.imperfectSpoilCorr.Unknown.tag = 'Unknown protocol. No spoiling correction defined.';
hmri_def.imperfectSpoilCorr.Unknown.enabled = false;
%--------------------------------------------------------------------------
% B1 mapping processing parameters
%--------------------------------------------------------------------------
% All defaults for B1 map calculation are defined in
% hMRI-Toolbox\config\hmri_b1_standard_defaults.m.
% See examples of local customization in the hMRI-Toolbox\config\local
% directory.
hmri_b1_standard_defaults;
%==========================================================================
% Maps processing parameters
%==========================================================================
%--------------------------------------------------------------------------
% US segmentation parameters
%--------------------------------------------------------------------------
% recommended TPM for segmentation
%hmri_def.proc.TPM = hmri_def.TPM ;
% Use the same as for the maps creation but one could (want to) use another
% one at some point.
% Map creation works with "standard" weighted-MR images to build the
% parametric maps. In the end these parametric maps taken together for a
% multichannel-segmention could show more details (for example subcortical
% nuclei?) and would therefore require a specific TPM. This TPM is of
% course still to be built at the moment...
% Flags to write out posterior tissue classes in native & warped space
% - GM/WM/CSF -> write warped, mod+unmod, and native, native+dartelImp.
% - others -> nothing
hmri_def.proc.w_native = [[1 1];[1 1];[1 1];[0 0];[0 0];[0 0]];
hmri_def.proc.w_warped = [[1 1];[1 1];[1 1];[0 0];[0 0];[0 0]];
% Number of Gaussians per tissue class
hmri_def.proc.nGauss = [2 2 2 3 4 2]; % originally in SPM [1 1 2 3 4 2]
%==========================================================================
% Experimental features
%==========================================================================
hmri_def.errormaps = true;
hmri_def.hom = false;
hmri_def.qMRI_maps_thresh.R2sHO = 1; % [1/s^2]
hmri_def.wols = true;
% these belong to the weighted least square fit
hmri_def.wolsdef.thr_w0 = 0.01; % regularization factor
hmri_def.wolsdef.sigmaMPM = log(50); % noise - should go in via gui
hmri_def.wolsdef.brainmask = '';
end