
An Open Source Framework For Visual Effects Software Development

John Haddon∗

Image Engine

Carsten Kolve†

Dr D Studios

Roberto Hradec‡

Radical

Abstract

Cortex [1] is an open source framework applicable to a broad gamut
of software development for visual effects. It can be distinguished
from projects such as Alembic [2] and GTO [3] in that it provides a
cross-application framework for computation and rendering in ad-
dition to file IO. Cortex has undergone continuous development at
Image Engine since 2006, forming the foundation for work on fea-
ture films such as District 9 and Twilight Eclipse. It has recently
seen further use and development at a number of other studios.

1 Basic Functionality

Cortex builds upon the popular Imath and Boost C++ libraries,
adding higher level data types such as curves, meshes and images,
along with a suite of algorithms for operating on those types. It
provides support for reading and writing many common graphics
file formats and provides native formats for object serialisation and
random access caching. Additionally, conversions are provided be-
tween Cortex types and the 3rd party APIs for Maya, Nuke, Hou-
dini, RenderMan and OpenGL. Most functionality is implemented
in C++ for speed, but also made available in Python via a thin layer
of bindings. This is of particular relevance to TDs, and allows for
the rapid development and deployment often necessitated by real
world production scenarios.

2 Write Once, Deploy Anywhere

A key feature of Cortex is that it allows code to be written once
using native types, and then deployed in multiple 3rd party appli-
cations without change. Such code comes in two principal forms
- ops, which calculate a result given some inputs, and procedurals,
which describe geometry and shading through a renderer agnostic
interface. In both cases inputs are described as parameters, which
define a required type (e.g. an integer), a set of additional con-
straints (e.g. an allowable range) and further information such as
user help and UI hints. Different host layers then map these inputs
to a form appropriate for a given application. A simple command
line host maps inputs to command arguments and Maya, Nuke and
Houdini hosts map them to attributes on native nodes, performing
automatic conversion between the host and Cortex data types. This
makes ops and procedurals usable in many different environments.

∗e-mail: john@image-engine.com
†e-mail:carsten.kolve@drdstudios.com
‡e-mail:rhradec@radical.ca

3 Case Studies

3.1 Lighting and Rendering

In Image Engine’s lighting pipeline all geometry is represented as
Cortex procedurals. These pull in cached models and animation,
and combine them with layered shaders and other appearance mod-
ifiers. Look development consists of building such procedurals dy-
namically from an extensible toolbox of components. Visualisation
in Maya is achieved by evaluating procedurals through an OpenGL
translation layer and rendering with 3delight uses an equivalent
RenderMan layer. Recent developments allow procedural hosting
in Nuke, with rendering via 3delight embedded in a custom node.

3.2 Crowd Simulation

Dr D Studios are using Cortex for crowd layout, simulation, visu-
alisation and rendering. Cortex extensions allow large volumes of
motion capture to be represented and cached efficiently. Layouts
are generated procedurally using scripted ops hosted in Maya, with
Cortex features such as mesh evaluation and fast neighbour queries
helping with terrain matching, clumping and collision detection.
Visualisation is achieved using procedurals hosted in Houdini, and
these also perform geometry instancing and skinning for rendering
with 3delight. The geometry can also be output at runtime within
Houdini to drive environment interaction effects.

3.3 Fur and Hair

Image Engine’s fur and hair system builds directly upon the Cortex
C++ libraries for best performance. Seeds are generated on meshes
using high quality point distributions and curves are then variously
grown, groomed, clumped, frizzed and mutated using algorithms
sitting atop Cortex’s geometry and image processing routines. This
system is multithreaded and happily processes, displays and renders
hairs on the order of tens of millions for multiple creatures.

3.4 Baking Lightmaps

Cortex is used at Radical to perform baking of volumetric ambient
occlusion and bounce light for all game geometry. The process is
triggered any time a change to geometry, lighting or texture is pub-
lished. Extensions to Cortex read in the assets and use the Render-
Man support layer to describe them to 3delight. Here the lighting is
computed before being stored in a custom encoded 8bit RGBA im-
age. The automated system replaces a previously manual process,
reducing baking times from 14 hours to approximately 30 minutes.

4 Summary

Cortex has been used successfully in a broad range of production
scenarios. We hope it will find further uses in the wider community.

5 References

[1] Cortex Project Website, http://code.google.com/p/cortex-vfx

[2] Alembic Project Website, http://www.alembic.io

[3] GTO Project Website, http://code.google.com/p/open-gto


