-
Notifications
You must be signed in to change notification settings - Fork 67
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
ENH: Add Python Example GlobalRegistrationOfTwoImages
- Loading branch information
Natalie Johnston
committed
May 23, 2022
1 parent
6f0e16b
commit 8b62ef2
Showing
2 changed files
with
283 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
277 changes: 277 additions & 0 deletions
277
src/Registration/Common/GlobalRegistrationOfTwoImages/Code.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,277 @@ | ||
import itk | ||
|
||
Dimension = 2 | ||
PixelType = itk.UC | ||
Double = itk.D | ||
Float = itk.F | ||
ImageType = itk.Image[PixelType, Dimension] | ||
|
||
def main(): | ||
# The transform that will map the fixed image into the moving image. | ||
TransformType = itk.TranslationTransform[Double, Dimension] | ||
|
||
# An optimizer is required to explore the parameter space of the transform | ||
# in search of optimal values of the metric. | ||
OptimizerType = itk.RegularStepGradientDescentOptimizer | ||
|
||
# The metric will compare how well the two images match each other. Metric | ||
# types are usually parameterized by the image types as it can be seen in | ||
# the following type declaration. | ||
MetricType = itk.MeanSquaresImageToImageMetric[ImageType, ImageType] | ||
|
||
# Finally, the type of the interpolator is declared. The interpolator will | ||
# evaluate the intensities of the moving image at non-grid positions. | ||
InterpolatorType = itk.LinearInterpolateImageFunction[ImageType, Double] | ||
|
||
# The registration method type is instantiated using the types of the | ||
# fixed and moving images. This class is responsible for interconnecting | ||
# all the components that we have described so far. | ||
RegistrationType = itk.ImageRegistrationMethod[ImageType, ImageType] | ||
|
||
# Create components | ||
metric = MetricType.New() | ||
transform = TransformType.New() | ||
optimizer = OptimizerType.New() | ||
interpolator = InterpolatorType.New() | ||
registration = RegistrationType.New() | ||
|
||
# Each component is now connected to the instance of the registration method. | ||
registration.SetMetric(metric) | ||
registration.SetOptimizer(optimizer) | ||
registration.SetTransform(transform) | ||
registration.SetInterpolator(interpolator) | ||
|
||
# Get the two images | ||
fixedImage = ImageType.New() | ||
movingImage = ImageType.New() | ||
|
||
CreateSphereImage(fixedImage) | ||
CreateEllipseImage(movingImage) | ||
|
||
# Write the two synthetic inputs | ||
itk.imwrite(fixedImage, "fixed.png") | ||
itk.imwrite(movingImage, "moving.png") | ||
|
||
# Set the registration inputs | ||
registration.SetFixedImage(fixedImage) | ||
registration.SetMovingImage(movingImage) | ||
|
||
registration.SetFixedImageRegion(fixedImage.GetLargestPossibleRegion()) | ||
|
||
# Initialize the transform | ||
initialParameters = itk.OptimizerParameters[itk.D](transform.GetNumberOfParameters()) | ||
|
||
initialParameters[0] = 0.0 # Initial offset along X | ||
initialParameters[1] = 0.0 # Initial offset along Y | ||
|
||
registration.SetInitialTransformParameters(initialParameters) | ||
|
||
optimizer.SetMaximumStepLength(4.00) | ||
optimizer.SetMinimumStepLength(0.01) | ||
|
||
# Set a stopping criterion | ||
optimizer.SetNumberOfIterations(200) | ||
|
||
# Connect an observer | ||
# surface = dict() | ||
# def print_iteration(): | ||
# surface[tuple(optimizer.GetCurrentPosition())] = optimizer.GetValue() | ||
# print(surface) | ||
|
||
# optimizer.AddObserver(itk.IterationEvent(), print_iteration) | ||
|
||
|
||
try: | ||
registration.Update() | ||
except: | ||
print("ExceptionObject caught !") | ||
return | ||
|
||
# The result of the registration process is an array of parameters that | ||
# defines the spatial transformation in an unique way. This final result is | ||
# obtained using the \code{GetLastTransformParameters()} method. | ||
|
||
finalParameters = registration.GetLastTransformParameters() | ||
|
||
# In the case of the \doxygen{TranslationTransform}, there is a | ||
# straightforward interpretation of the parameters. Each element of the | ||
# array corresponds to a translation along one spatial dimension. | ||
|
||
TranslationAlongX = finalParameters[0] | ||
TranslationAlongY = finalParameters[1] | ||
|
||
# The optimizer can be queried for the actual number of iterations | ||
# performed to reach convergence. The \code{GetCurrentIteration()} | ||
# method returns this value. A large number of iterations may be an | ||
# indication that the maximum step length has been set too small, which | ||
# is undesirable since it results in long computational times. | ||
|
||
numberOfIterations = optimizer.GetCurrentIteration() | ||
|
||
# The value of the image metric corresponding to the last set of parameters | ||
# can be obtained with the \code{GetValue()} method of the optimizer. | ||
|
||
bestValue = optimizer.GetValue() | ||
|
||
# Print out results | ||
print("Result = ") | ||
print(" Translation X = {}".format(TranslationAlongX)) | ||
print(" Translation Y = {}".format(TranslationAlongY)) | ||
print(" Iterations = {}".format(numberOfIterations)) | ||
print(" Metric value = {}".format(bestValue)) | ||
|
||
# It is common, as the last step of a registration task, to use the | ||
# resulting transform to map the moving image into the fixed image space. | ||
# This is easily done with the \doxygen{ResampleImageFilter}. Please | ||
# refer to Section~\ref{sec:ResampleImageFilter} for details on the use | ||
# of this filter. First, a ResampleImageFilter type is instantiated | ||
# using the image types. It is convenient to use the fixed image type as | ||
# the output type since it is likely that the transformed moving image | ||
# will be compared with the fixed image. | ||
ResampleFilterType = itk.ResampleImageFilter[ImageType, ImageType] | ||
|
||
# A resampling filter is created and the moving image is connected as its input. | ||
|
||
resampler = ResampleFilterType.New() | ||
resampler.SetInput(movingImage) | ||
|
||
# The Transform that is produced as output of the Registration method is | ||
# also passed as input to the resampling filter. Note the use of the | ||
# methods \code{GetOutput()} and \code{Get()}. This combination is needed | ||
# here because the registration method acts as a filter whose output is a | ||
# transform decorated in the form of a \doxygen{DataObject}. For details in | ||
# this construction you may want to read the documentation of the | ||
# \doxygen{DataObjectDecorator}. | ||
|
||
resampler.SetTransform(registration.GetOutput().Get()) | ||
|
||
# As described in Section \ref{sec:ResampleImageFilter}, the | ||
# ResampleImageFilter requires additional parameters to be specified, in | ||
# particular, the spacing, origin and size of the output image. The default | ||
# pixel value is also set to a distinct gray level in order to highlight | ||
# the regions that are mapped outside of the moving image. | ||
|
||
resampler.SetSize(itk.size(fixedImage)) | ||
resampler.SetOutputOrigin(fixedImage.GetOrigin()) | ||
resampler.SetOutputSpacing(fixedImage.GetSpacing()) | ||
resampler.SetOutputDirection(fixedImage.GetDirection()) | ||
resampler.SetDefaultPixelValue(100) | ||
|
||
# The output of the filter is passed to a writer that will store the | ||
# image in a file. An \doxygen{CastImageFilter} is used to convert the | ||
# pixel type of the resampled image to the final type used by the | ||
# writer. The cast and writer filters are instantiated below. | ||
CastFilterType = itk.CastImageFilter[ImageType, ImageType] | ||
|
||
caster = CastFilterType.New() | ||
caster.SetInput(resampler.GetOutput()) | ||
itk.imwrite(caster.GetOutput(), "outputPython.png") | ||
|
||
|
||
# The fixed image and the transformed moving image can easily be compared | ||
# using the \doxygen{SubtractImageFilter}. This pixel-wise filter computes | ||
# the difference between homologous pixels of its two input images. | ||
|
||
|
||
DifferenceFilterType = itk.SubtractImageFilter[ | ||
ImageType, | ||
ImageType, | ||
ImageType] | ||
|
||
difference = DifferenceFilterType.New() | ||
difference.SetInput1( fixedImage ) | ||
difference.SetInput2( resampler.GetOutput() ) | ||
|
||
return | ||
|
||
|
||
def CreateEllipseImage(image): | ||
EllipseType = itk.EllipseSpatialObject[Dimension] | ||
|
||
SpatialObjectToImageFilterType = itk.SpatialObjectToImageFilter[itk.SpatialObject[2], ImageType] | ||
|
||
imageFilter = SpatialObjectToImageFilterType.New() | ||
|
||
size = itk.Size[Dimension]() | ||
size[0] = 100 | ||
size[1] = 100 | ||
|
||
imageFilter.SetSize(size) | ||
|
||
spacing = [1, 1] | ||
imageFilter.SetSpacing(spacing) | ||
|
||
ellipse = EllipseType.New() | ||
radiusArray = itk.Array[Float]() | ||
radiusArray.SetSize(Dimension) | ||
radiusArray[0] = 10 | ||
radiusArray[1] = 20 | ||
ellipse.SetRadiusInObjectSpace(radiusArray) | ||
|
||
TransformType = itk.AffineTransform[Double, Dimension] | ||
transform = TransformType.New() | ||
transform.SetIdentity() | ||
|
||
translation = itk.Vector[Float, Dimension]() | ||
translation[0] = 65 | ||
translation[1] = 45 | ||
transform.Translate(translation, False) | ||
|
||
ellipse.SetObjectToParentTransform(transform) | ||
|
||
imageFilter.SetInput(ellipse) | ||
|
||
ellipse.SetDefaultInsideValue(255) | ||
ellipse.SetDefaultOutsideValue(0) | ||
imageFilter.SetUseObjectValue(True) | ||
imageFilter.SetOutsideValue(0) | ||
|
||
imageFilter.Update() | ||
image.Graft(imageFilter.GetOutput()) | ||
|
||
|
||
def CreateSphereImage(image): | ||
EllipseType = itk.EllipseSpatialObject[Dimension] | ||
|
||
SpatialObjectToImageFilterType = itk.SpatialObjectToImageFilter[itk.SpatialObject[2], itk.Image[itk.UC,2]] | ||
|
||
imageFilter = SpatialObjectToImageFilterType.New() | ||
|
||
size = itk.Size[Dimension]() | ||
size[0] = 100 | ||
size[1] = 100 | ||
imageFilter.SetSize(size) | ||
|
||
spacing = [1, 1] | ||
imageFilter.SetSpacing(spacing) | ||
|
||
ellipse = EllipseType.New() | ||
radiusArray = itk.Array[Float]() | ||
radiusArray.SetSize(Dimension) | ||
radiusArray[0] = 10 | ||
radiusArray[1] = 10 | ||
ellipse.SetRadiusInObjectSpace(radiusArray) | ||
|
||
TransformType = itk.AffineTransform[Double, Dimension] | ||
transform = TransformType.New() | ||
transform.SetIdentity() | ||
|
||
translation = itk.Vector[PixelType, Dimension]() | ||
translation[0] = 50 | ||
translation[1] = 50 | ||
transform.Translate(translation, False) | ||
|
||
ellipse.SetObjectToParentTransform(transform) | ||
|
||
imageFilter.SetInput(ellipse) | ||
|
||
ellipse.SetDefaultInsideValue(255) | ||
ellipse.SetDefaultOutsideValue(0) | ||
imageFilter.SetUseObjectValue(True) | ||
imageFilter.SetOutsideValue(0) | ||
|
||
imageFilter.Update() | ||
image.Graft(imageFilter.GetOutput()) | ||
|
||
if __name__ == "__main__": | ||
main() |