-
Notifications
You must be signed in to change notification settings - Fork 10
/
render_video_EWC.py
227 lines (198 loc) · 6.32 KB
/
render_video_EWC.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
"""
Copyright (c) 2022 Ruilong Li, UC Berkeley.
"""
import argparse
import math
import os, sys
import time
import imageio
import numpy as np
import torch
import torch.nn.functional as F
import tqdm
import sys
from utils.nerfacc_radiance_fields.mlp import VanillaNeRFRadianceFieldG
from utils.nerfacc_radiance_fields.utils import render_image, set_random_seed
# metrics
from torchmetrics import (
PeakSignalNoiseRatio,
StructuralSimilarityIndexMeasure
)
from torchmetrics.image.lpip import LearnedPerceptualImagePatchSimilarity
from einops import rearrange
from nerfacc import ContractionType, OccupancyGrid
# os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
if __name__ == "__main__":
device = "cuda:0"
parser = argparse.ArgumentParser()
parser.add_argument(
"--train_split",
type=str,
default="train",
choices=["train", "trainval"],
help="which train split to use",
)
parser.add_argument(
"--scene",
type=str,
default="Barn",
help="which scene to use",
)
parser.add_argument(
"--aabb",
type=lambda s: [float(item) for item in s.split(",")],
default="-1.5,-1.5,-1.5,1.5,1.5,1.5",
help="delimited list input",
)
parser.add_argument(
"--test_chunk_size",
type=int,
default=8192,
)
parser.add_argument(
"--unbounded",
action="store_true",
help="whether to use unbounded rendering",
)
parser.add_argument("--cone_angle", type=float, default=0.0)
# CL params
parser.add_argument('--task_number', type=int, default=10,
help='task_number')
parser.add_argument('--task_curr', type=int, default=9,
help='task_number [0, N-1]')
parser.add_argument('--task_split_method', type=str, default='seq',
help='seq or random')
parser.add_argument('--rep_size', type=int, default=0,
help='0 to number of images')
parser.add_argument('--seed', type=int, default=42,
help='random seed, wrong random seed can lead to nan loss')
parser.add_argument(
"--max_steps",
type=int,
default=50000,
)
parser.add_argument(
"--dim",
type=int,
default=256,
)
parser.add_argument(
"--smallAABB",
type=int,
default=0,
help="whether to use a small bounding box",
)
parser.add_argument(
"--dim_a",
type=int,
default=48,
help="dimension of appearance code",
)
parser.add_argument(
"--dim_g",
type=int,
default=16,
help="dimension of geometry code",
)
parser.add_argument(
"--vocab_size",
type=int,
default=10,
help="total number of tasks",
)
parser.add_argument(
"--data_root",
type=str,
default='dataset/WAT',
help="total number of tasks",
)
parser.add_argument(
"--frame_start",
type=int,
default=0,
help="starting frame to render",
)
parser.add_argument(
"--frame_end",
type=int,
default=10000,
help="end frame to render",
)
args = parser.parse_args()
set_random_seed(args.seed)
if os.path.isfile("/home/zcai/.cache/torch_extensions/py39_cu117/nerfacc_cuda/lock"):
print("lock file exists in cache")
os.remove("/home/zcai/.cache/torch_extensions/py39_cu117/nerfacc_cuda/lock")
else:
print("lock file not exists")
render_n_samples = 1024
psnr_func = PeakSignalNoiseRatio(data_range=1)
ssim_func = StructuralSimilarityIndexMeasure(data_range=1)
lpip_func = LearnedPerceptualImagePatchSimilarity('vgg')
for p in lpip_func.net.parameters():
p.requires_grad = False
# setup the radiance field we want to train.
# max_steps = args.max_steps
max_steps = 100 # test
grad_scaler = torch.cuda.amp.GradScaler(1)
# just read out the model
model_dir = f'results/WAT/EWC/{args.scene}_{args.rep_size}'
out_dict_read = torch.load(model_dir+'/model.torchSave')
radiance_field = out_dict_read['model'].to(device).eval()
occupancy_grid = out_dict_read['occupancy_grid'].to(device)
from utils.nerfacc_radiance_fields.datasets.lb.colmap_render import SubjectLoader_lb as SubjectLoader_render
data_root_fp = args.data_root
target_sample_batch_size = 1 << 16
grid_resolution = 128
contraction_type = ContractionType.AABB
scene_aabb = torch.tensor(args.aabb, dtype=torch.float32, device=device)
near_plane = None
far_plane = None
render_step_size = (
(scene_aabb[3:] - scene_aabb[:3]).max()
* math.sqrt(3)
/ render_n_samples
).item()
test_dataset_kwargs = {}
test_dataset = SubjectLoader_render(
subject_id=args.scene,
root_fp=data_root_fp,
split="render",
num_rays=None,
**test_dataset_kwargs,
)
test_dataset.images = test_dataset.images.to(device)
test_dataset.camtoworlds = test_dataset.camtoworlds.to(device)
test_dataset.K = test_dataset.K.to(device)
test_dataset.task_ids = test_dataset.task_ids.to(device)
# evaluation
result_dir = f'results/WAT/EWC/{args.scene}_{args.rep_size}/video'
os.makedirs(result_dir, exist_ok=True)
if args.frame_start >= len(test_dataset):
print("rendering already finished")
exit()
args.frame_end = min(len(test_dataset)-1, args.frame_end)
with torch.no_grad():
for i in tqdm.tqdm(range(args.frame_start, args.frame_end+1)):
data = test_dataset[i]
render_bkgd = data["color_bkgd"]
rays = data["rays"]
task_id = data['task_id'].flatten()
# rendering
rgb, acc, depth, _ = render_image(
radiance_field,
occupancy_grid,
rays,
task_id,
scene_aabb,
# rendering options
near_plane=None,
far_plane=None,
render_step_size=render_step_size,
render_bkgd=render_bkgd,
cone_angle=args.cone_angle,
# test options
test_chunk_size=args.test_chunk_size,
)
rgb_save = (rgb.cpu().numpy()*255).astype(np.uint8)
imageio.imsave(os.path.join(result_dir, '{}.png'.format(i)), rgb_save)