forked from openfheorg/openfhe-development
-
Notifications
You must be signed in to change notification settings - Fork 0
/
simple-ckks-bootstrapping.cpp
153 lines (126 loc) · 6.63 KB
/
simple-ckks-bootstrapping.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
//==================================================================================
// BSD 2-Clause License
//
// Copyright (c) 2014-2022, NJIT, Duality Technologies Inc. and other contributors
//
// All rights reserved.
//
// Author TPOC: contact@openfhe.org
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this
// list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//==================================================================================
/*
Example for CKKS bootstrapping with full packing
*/
#define PROFILE
#include "openfhe.h"
using namespace lbcrypto;
void SimpleBootstrapExample();
int main(int argc, char* argv[]) {
SimpleBootstrapExample();
}
void SimpleBootstrapExample() {
CCParams<CryptoContextCKKSRNS> parameters;
// A. Specify main parameters
/* A1) Secret key distribution
* The secret key distribution for CKKS should either be SPARSE_TERNARY or UNIFORM_TERNARY.
* The SPARSE_TERNARY distribution was used in the original CKKS paper,
* but in this example, we use UNIFORM_TERNARY because this is included in the homomorphic
* encryption standard.
*/
SecretKeyDist secretKeyDist = UNIFORM_TERNARY;
parameters.SetSecretKeyDist(secretKeyDist);
/* A2) Desired security level based on FHE standards.
* In this example, we use the "NotSet" option, so the example can run more quickly with
* a smaller ring dimension. Note that this should be used only in
* non-production environments, or by experts who understand the security
* implications of their choices. In production-like environments, we recommend using
* HEStd_128_classic, HEStd_192_classic, or HEStd_256_classic for 128-bit, 192-bit,
* or 256-bit security, respectively. If you choose one of these as your security level,
* you do not need to set the ring dimension.
*/
parameters.SetSecurityLevel(HEStd_NotSet);
parameters.SetRingDim(1 << 12);
/* A3) Scaling parameters.
* By default, we set the modulus sizes and rescaling technique to the following values
* to obtain a good precision and performance tradeoff. We recommend keeping the parameters
* below unless you are an FHE expert.
*/
#if NATIVEINT == 128 && !defined(__EMSCRIPTEN__)
ScalingTechnique rescaleTech = FIXEDAUTO;
usint dcrtBits = 78;
usint firstMod = 89;
#else
ScalingTechnique rescaleTech = FLEXIBLEAUTO;
usint dcrtBits = 59;
usint firstMod = 60;
#endif
parameters.SetScalingModSize(dcrtBits);
parameters.SetScalingTechnique(rescaleTech);
parameters.SetFirstModSize(firstMod);
/* A4) Multiplicative depth.
* The goal of bootstrapping is to increase the number of available levels we have, or in other words,
* to dynamically increase the multiplicative depth. However, the bootstrapping procedure itself
* needs to consume a few levels to run. We compute the number of bootstrapping levels required
* using GetBootstrapDepth, and add it to levelsAvailableAfterBootstrap to set our initial multiplicative
* depth. We recommend using the input parameters below to get started.
*/
std::vector<uint32_t> levelBudget = {4, 4};
// Note that the actual number of levels avalailable after bootstrapping before next bootstrapping
// will be levelsAvailableAfterBootstrap - 1 because an additional level
// is used for scaling the ciphertext before next bootstrapping (in 64-bit CKKS bootstrapping)
uint32_t levelsAvailableAfterBootstrap = 10;
usint depth = levelsAvailableAfterBootstrap + FHECKKSRNS::GetBootstrapDepth(levelBudget, secretKeyDist);
parameters.SetMultiplicativeDepth(depth);
CryptoContext<DCRTPoly> cryptoContext = GenCryptoContext(parameters);
cryptoContext->Enable(PKE);
cryptoContext->Enable(KEYSWITCH);
cryptoContext->Enable(LEVELEDSHE);
cryptoContext->Enable(ADVANCEDSHE);
cryptoContext->Enable(FHE);
usint ringDim = cryptoContext->GetRingDimension();
// This is the maximum number of slots that can be used for full packing.
usint numSlots = ringDim / 2;
std::cout << "CKKS scheme is using ring dimension " << ringDim << std::endl << std::endl;
cryptoContext->EvalBootstrapSetup(levelBudget);
auto keyPair = cryptoContext->KeyGen();
cryptoContext->EvalMultKeyGen(keyPair.secretKey);
cryptoContext->EvalBootstrapKeyGen(keyPair.secretKey, numSlots);
std::vector<double> x = {0.25, 0.5, 0.75, 1.0, 2.0, 3.0, 4.0, 5.0};
size_t encodedLength = x.size();
// We start with a depleted ciphertext that has used up all of its levels.
Plaintext ptxt = cryptoContext->MakeCKKSPackedPlaintext(x, 1, depth - 1);
ptxt->SetLength(encodedLength);
std::cout << "Input: " << ptxt << std::endl;
Ciphertext<DCRTPoly> ciph = cryptoContext->Encrypt(keyPair.publicKey, ptxt);
std::cout << "Initial number of levels remaining: " << depth - ciph->GetLevel() << std::endl;
// Perform the bootstrapping operation. The goal is to increase the number of levels remaining
// for HE computation.
auto ciphertextAfter = cryptoContext->EvalBootstrap(ciph);
std::cout << "Number of levels remaining after bootstrapping: "
<< depth - ciphertextAfter->GetLevel() - (ciphertextAfter->GetNoiseScaleDeg() - 1) << std::endl
<< std::endl;
Plaintext result;
cryptoContext->Decrypt(keyPair.secretKey, ciphertextAfter, &result);
result->SetLength(encodedLength);
std::cout << "Output after bootstrapping \n\t" << result << std::endl;
}