forked from alastairreid/asl-interpreter
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathprelude.asl
782 lines (665 loc) · 24.3 KB
/
prelude.asl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
////////////////////////////////////////////////////////////////
// ASL standard prelude
//
// Copyright Arm Limited (c) 2017-2019
// Copyright (C) 2022-2025 Intel Corporation
// SPDX-Licence-Identifier: BSD-3-Clause
////////////////////////////////////////////////////////////////
__builtin type real;
__builtin type string;
__builtin type __mask; // todo: should have a type parameter
__builtin type __RAM; // todo: should have a type parameter
type bit of bits(1);
enumeration boolean { FALSE, TRUE };
enumeration signal { LOW, HIGH };
__builtin func asl_eq_bool(x : boolean, y : boolean) => boolean;
__builtin func asl_ne_bool(x : boolean, y : boolean) => boolean;
__builtin func asl_not_bool(x : boolean) => boolean;
__builtin func asl_and_bool(x : boolean, y : boolean) => boolean;
__builtin func asl_or_bool(x : boolean, y : boolean) => boolean;
__builtin func asl_equiv_bool(x : boolean, y : boolean) => boolean;
__builtin func asl_implies_bool(x : boolean, y : boolean) => boolean;
__builtin func asl_eq_int(x : integer, y : integer) => boolean;
__builtin func asl_ne_int(x : integer, y : integer) => boolean;
__builtin func asl_gt_int(x : integer, y : integer) => boolean;
__builtin func asl_ge_int(x : integer, y : integer) => boolean;
__builtin func asl_le_int(x : integer, y : integer) => boolean;
__builtin func asl_lt_int(x : integer, y : integer) => boolean;
__builtin func asl_is_pow2_int(x : integer) => boolean;
__builtin func asl_add_int(x : integer, y : integer) => integer;
__builtin func asl_neg_int(x : integer) => integer;
__builtin func asl_sub_int(x : integer, y : integer) => integer;
__builtin func asl_shl_int(x : integer, y : integer) => integer;
__builtin func asl_shr_int(x : integer, y : integer) => integer;
__builtin func asl_mul_int(x : integer, y : integer) => integer;
__builtin func asl_exact_div_int(x : integer, y : integer) => integer;
__builtin func asl_zdiv_int(x : integer, y : integer) => integer;
__builtin func asl_zrem_int(x : integer, y : integer) => integer;
__builtin func asl_fdiv_int(x : integer, y : integer) => integer;
__builtin func asl_frem_int(x : integer, y : integer) => integer;
__builtin func asl_mod_pow2_int(x : integer, y : integer) => integer;
__builtin func asl_align_int(x : integer, y : integer) => integer;
__builtin func asl_pow2_int(y : integer) => integer;
__builtin func asl_cvt_int_real(x : integer) => real;
__builtin func asl_eq_real(x : real, y : real) => boolean;
__builtin func asl_ne_real(x : real, y : real) => boolean;
__builtin func asl_le_real(x : real, y : real) => boolean;
__builtin func asl_lt_real(x : real, y : real) => boolean;
__builtin func asl_gt_real(x : real, y : real) => boolean;
__builtin func asl_ge_real(x : real, y : real) => boolean;
__builtin func asl_add_real(x : real, y : real) => real;
__builtin func asl_neg_real(x : real) => real;
__builtin func asl_sub_real(x : real, y : real) => real;
__builtin func asl_mul_real(x : real, y : real) => real;
__builtin func asl_divide_real(x : real, y : real) => real;
__builtin func asl_pow2_real(y : integer) => real;
__builtin func asl_round_tozero_real(x : real) => integer;
__builtin func asl_round_down_real(x : real) => integer;
__builtin func asl_round_up_real(x : real) => integer;
__builtin func asl_sqrt_real(x : real) => real;
__builtin func asl_cvt_int_bits(x : integer, N : integer) => bits(N);
__builtin func asl_cvt_bits_sint{N}(x : bits(N)) => integer;
__builtin func asl_cvt_bits_uint{N}(x : bits(N)) => integer;
__builtin func asl_in_mask{N}(x : bits(N), y : __mask(N)) => boolean;
__builtin func asl_notin_mask{N}(x : bits(N), y : __mask(N)) => boolean;
__builtin func asl_eq_bits{N}(x : bits(N), y : bits(N)) => boolean;
__builtin func asl_ne_bits{N}(x : bits(N), y : bits(N)) => boolean;
__builtin func asl_add_bits{N}(x : bits(N), y : bits(N)) => bits(N);
__builtin func asl_sub_bits{N}(x : bits(N), y : bits(N)) => bits(N);
__builtin func asl_mul_bits{N}(x : bits(N), y : bits(N)) => bits(N);
__builtin func asl_and_bits{N}(x : bits(N), y : bits(N)) => bits(N);
__builtin func asl_or_bits{N}(x : bits(N), y : bits(N)) => bits(N);
__builtin func asl_eor_bits{N}(x : bits(N), y : bits(N)) => bits(N);
__builtin func asl_not_bits{N}(x : bits(N)) => bits(N);
__builtin func asl_zeros_bits(N : integer) => bits(N);
__builtin func asl_ones_bits(N : integer) => bits(N);
__builtin func asl_lsl_bits{N}(x : bits(N), i : integer) => bits(N);
__builtin func asl_lsr_bits{N}(x : bits(N), i : integer) => bits(N);
__builtin func asl_asr_bits{N}(x : bits(N), i : integer) => bits(N);
// Construct 'ZeroExtend(Ones(w), N)'
// e.g. mk_mask(3, 8) == '00000 111'
// This is used in the bitmask lowering transformation
__builtin func asl_mk_mask(w : integer, N : integer) => bits(N);
func asl_add_bits_int{N}(x : bits(N), y : integer) => bits(N)
begin
return asl_add_bits(x, asl_cvt_int_bits(y, N));
end
func asl_sub_bits_int{N}(x : bits(N), y : integer) => bits(N)
begin
return asl_sub_bits(x, asl_cvt_int_bits(y, N));
end
func asl_mul_bits_int{N}(x : bits(N), y : integer) => bits(N)
begin
return asl_mul_bits(x, asl_cvt_int_bits(y, N));
end
// Bit slice helper functions used in some backends
func asl_extract_bits(x : bits(N), lo : integer, W : integer) => bits(W)
begin
return x[lo +: W];
end
// Bit slice helper functions used in some backends
func asl_bits_set(x : bits(N), lo : integer, v : bits(W)) => bits(N)
begin
var y = x;
y[lo +: W] = v;
return y;
end
__operator2 + = asl_add_int, asl_add_real, asl_add_bits, asl_add_bits_int;
__operator2 - = asl_sub_int, asl_sub_real, asl_sub_bits, asl_sub_bits_int;
__operator1 - = asl_neg_int, asl_neg_real;
__operator2 * = asl_mul_int, asl_mul_real, asl_mul_bits, asl_mul_bits_int;
__operator2 / = asl_divide_real;
__builtin func asl_replicate_bits{M}(x : bits(M), N : integer) => bits(M*N);
__builtin func asl_append_bits{M, N}(x : bits(M), y : bits(N)) => bits(M+N);
__builtin func asl_zero_extend_bits{M}(x : bits(M), N : integer) => bits(N);
__builtin func asl_sign_extend_bits{M}(x : bits(M), N : integer) => bits(N);
__builtin func asl_eq_sintN(x : __sint(N), y : __sint(N)) => boolean;
__builtin func asl_ne_sintN(x : __sint(N), y : __sint(N)) => boolean;
__builtin func asl_gt_sintN(x : __sint(N), y : __sint(N)) => boolean;
__builtin func asl_ge_sintN(x : __sint(N), y : __sint(N)) => boolean;
__builtin func asl_le_sintN(x : __sint(N), y : __sint(N)) => boolean;
__builtin func asl_lt_sintN(x : __sint(N), y : __sint(N)) => boolean;
__builtin func asl_add_sintN(x : __sint(N), y : __sint(N)) => __sint(N);
__builtin func asl_neg_sintN(x : __sint(N)) => __sint(N);
__builtin func asl_sub_sintN(x : __sint(N), y : __sint(N)) => __sint(N);
__builtin func asl_shl_sintN(x : __sint(N), y : __sint(N)) => __sint(N);
__builtin func asl_shr_sintN(x : __sint(N), y : __sint(N)) => __sint(N);
__builtin func asl_mul_sintN(x : __sint(N), y : __sint(N)) => __sint(N);
__builtin func asl_exact_div_sintN(x : __sint(N), y : __sint(N)) => __sint(N);
__builtin func asl_zdiv_sintN(x : __sint(N), y : __sint(N)) => __sint(N);
__builtin func asl_zrem_sintN(x : __sint(N), y : __sint(N)) => __sint(N);
__builtin func asl_fdiv_sintN(x : __sint(N), y : __sint(N)) => __sint(N);
__builtin func asl_frem_sintN(x : __sint(N), y : __sint(N)) => __sint(N);
__builtin func asl_is_pow2_sintN(x : __sint(N)) => boolean;
__builtin func asl_pow2_sintN(x : __sint(N)) => __sint(N);
__builtin func asl_align_sintN(x : __sint(N), y : __sint(N)) => __sint(N);
__builtin func asl_mod_pow2_sintN(x : __sint(N), y : __sint(N)) => __sint(N);
__builtin func asl_cvt_sintN_bits(x : __sint(M), N : integer) => bits(N);
__builtin func asl_cvt_bits_ssintN(x : bits(N)) => __sint(N);
__builtin func asl_cvt_bits_usintN(x : bits(N)) => __sint(N+1);
__builtin func asl_cvt_sintN_int(x : __sint(N)) => integer;
__builtin func asl_cvt_int_sintN(x : integer, N : integer) => __sint(N);
__builtin func asl_resize_sintN(x : __sint(M), N : integer) => __sint(N);
__builtin func print_sintN_hex(x : __sint(N)) => ();
__builtin func print_sintN_dec(x : __sint(N)) => ();
__operator1 - = asl_neg_sintN;
__builtin func asl_cvt_int_hexstr(x : integer) => string;
__builtin func asl_cvt_int_decstr(x : integer) => string;
__builtin func asl_cvt_bool_str(x : boolean) => string;
__builtin func asl_cvt_bits_str(N : integer, x : bits(N)) => string;
__builtin func asl_cvt_real_str(x : real) => string;
__builtin func asl_append_str_str(x : string, y : string) => string;
__builtin func asl_eq_str(x : string, y : string) => boolean;
__builtin func asl_ne_str(x : string, y : string) => boolean;
__builtin func print_str(x : string) => ();
__builtin func print_char(x : integer) => ();
__builtin func print_int_hex(x : integer) => ();
__builtin func print_int_dec(x : integer) => ();
__builtin func print_bits_hex(x : bits(N)) => ();
__builtin func pragma(x : string) => ();
__builtin func asl_file_open(name : string, mode : string) => integer;
__builtin func asl_file_write(fd : integer, data : string) => integer;
__builtin func asl_file_getc(fd : integer) => integer;
__builtin func asl_ram_init(A : integer, ram : __RAM(A), val : bits(64)) => ();
__builtin func asl_ram_read(A : integer, N : integer, ram : __RAM(A), address : bits(A)) => bits(8*N);
__builtin func asl_ram_write(A : integer, N : integer, ram : __RAM(A), address : bits(A), val : bits(8*N)) => ();
// backwards compatibility layer until the specs are updated to use the new asl_ prefix versions
// uses the bottom 64 bits of val to initialize memory
func ram_init(A : integer, N : integer, ram : __RAM(A), val : bits(8*N))
begin
if asl_gt_int(N, 8) then
asl_ram_init(A, ram, val[0 +: 64]);
else
asl_ram_init(A, ram, asl_replicate_bits(val, 8)[0 +: 64]);
end
end
// backwards compatibility layer until the specs are updated to use the new asl_ prefix versions
func ram_read(A : integer, N : integer, ram : __RAM(A), address : bits(A)) => bits(8*N)
begin
return asl_ram_read(A, N, ram, address);
end
// backwards compatibility layer until the specs are updated to use the new asl_ prefix versions
func ram_write(A : integer, N : integer, ram : __RAM(A), address : bits(A), val : bits(8*N))
begin
asl_ram_write(A, N, ram, address, val);
end
func __InitRAM(A : integer, N : integer, ram : __RAM(A), val : bits(8*N))
begin
if asl_gt_int(N, 8) then
asl_ram_init(A, ram, val[0 +: 64]);
else
asl_ram_init(A, ram, asl_replicate_bits(val, 8)[0 +: 64]);
end
end
func __ReadRAM(A : integer, N : integer, ram : __RAM(A), address : bits(A)) => bits(8*N)
begin
return asl_ram_read(A, N, ram, address);
end
func __WriteRAM(A : integer, N : integer, ram : __RAM(A), address : bits(A), val : bits(8*N))
begin
asl_ram_write(A, N, ram, address, val);
end
// Advance trace to next instruction
__builtin func __TraceNext() => ();
// Trace a read/write of data/instruction from a physical memory address
__builtin func __TracePhysicalMemory
(is_read : boolean, is_data : boolean, PA : integer, N : integer,
physical_address : bits(PA), val : bits(N)
) => ();
// Trace a read/write of data/instruction from a virtual memory address
// providing both the context ID and the physical address that the access maps to.
__builtin func __TraceVirtualMemory
(is_read : boolean, is_data : boolean, VA : integer, PA : integer, N : integer,
context : bits(C), virtual_address : bits(VA), physical_address : bits(PA), val : bits(N)
) => ();
// Trace a read of a page table entry from a physical address
// providing both the context ID and the level of this entry in the page table tree.
__builtin func __TracePageTableWalk
(PA : integer, N : integer,
context : bits(C), level : integer,
physical_address : bits(PA), val : bits(N)
) => ();
// Emit an error message to trace
__builtin func __TraceError(kind : string, event : string) => ();
// Emit an informational memory to trace
__builtin func __TraceEvent(kind : string, event : string) => ();
func putchar(c : integer)
begin
print_char(c);
end
__operator1 ! = asl_not_bool;
__operator2 && = asl_and_bool;
__operator2 || = asl_or_bool;
__operator2 <-> = asl_equiv_bool;
__operator2 --> = asl_implies_bool;
// omit since they are auto-generated
// __operator2 == = eq_bool;
// __operator2 != = ne_bool;
__operator2 == = asl_eq_int, asl_eq_real, asl_eq_bits, asl_eq_str, asl_in_mask;
__operator2 != = asl_ne_int, asl_ne_real, asl_ne_bits, asl_ne_str, asl_notin_mask;
__operator2 <= = asl_le_int, asl_le_real;
__operator2 >= = asl_ge_int, asl_ge_real;
__operator2 < = asl_lt_int, asl_lt_real;
__operator2 > = asl_gt_int, asl_gt_real;
__operator2 << = asl_shl_int;
__operator2 >> = asl_shr_int;
func IsPowerOfTwo(x : integer) => boolean
begin
return asl_is_pow2_int(x);
end
func asl_pow_int_int(x : integer, y : integer) => integer
begin
if x == 2 then
return asl_pow2_int(y); // optimized case
else
assert y >= 0;
var result : integer = 1;
for i = 1 to y do
result = result * x;
end
return result;
end
end
func asl_pow_real_int(x : real, y : integer) => real
begin
assert x == 2.0;
return asl_pow2_real(y);
end
__operator2 ^ = asl_pow_int_int, asl_pow_real_int;
func asl_frem_bits_int{N}(x : bits(N), y : integer) => integer
begin
assert y > 0;
return asl_frem_int(asl_cvt_bits_uint(x), y);
end
// Division: error if division is not exact
__operator2 DIV = asl_exact_div_int;
// Division: round to zero
__operator2 QUOT = asl_zdiv_int;
__operator2 REM = asl_zrem_int;
// Division: round to -infinity (floor)
__operator2 DIVRM = asl_fdiv_int;
__operator2 MOD = asl_frem_int, asl_frem_bits_int;
__operator2 AND = asl_and_bits;
__operator2 OR = asl_or_bits;
__operator2 EOR = asl_eor_bits;
__operator1 NOT = asl_not_bits;
func asl_append_str_bool(x : string, y : boolean) => string
begin
return asl_append_str_str(x, asl_cvt_bool_str(y));
end
func asl_append_bool_str(x : boolean, y : string) => string
begin
return asl_append_str_str(asl_cvt_bool_str(x), y);
end
func asl_append_str_bits{N}(x : string, y : bits(N)) => string
begin
return asl_append_str_str(x, asl_cvt_bits_str(N, y));
end
func asl_append_bits_str{N}(x : bits(N), y : string) => string
begin
return asl_append_str_str(asl_cvt_bits_str(N, x), y);
end
func asl_append_str_real(x : string, y : real) => string
begin
return asl_append_str_str(x, asl_cvt_real_str(y));
end
func asl_append_real_str(x : real, y : string) => string
begin
return asl_append_str_str(asl_cvt_real_str(x), y);
end
func asl_append_str_int(x : string, y : integer) => string
begin
return asl_append_str_str(x, asl_cvt_int_decstr(y));
end
func asl_append_int_str(x : integer, y : string) => string
begin
return asl_append_str_str(asl_cvt_int_decstr(x), y);
end
__operator2 ++ = asl_append_str_str;
__operator2 ++ = asl_append_str_bool, asl_append_bool_str;
__operator2 ++ = asl_append_str_real, asl_append_real_str;
__operator2 ++ = asl_append_str_bits, asl_append_bits_str;
__operator2 ++ = asl_append_str_int, asl_append_int_str;
////////////////////////////////////////////////////////////////
// 9.1 Standard integer functions and procedures
////////////////////////////////////////////////////////////////
// Absolute value of an integer.
func Abs(x : integer) => integer
begin
return if x >= 0 then x else -x;
end
// Convert a bitvector to an unsigned integer, where bit 0 is LSB.
// This is the recommended way to convert a bit vector to an integer.
func UInt{N}(x : bits(N)) => integer {0 .. 2^N-1}
begin
return asl_cvt_bits_uint(x);
end
// Convert a 2s complement bitvector to a signed integer.
func SInt{N}(x : bits(N)) => integer {-(2^(N-1)) .. 2^(N-1)-1}
begin
return asl_cvt_bits_sint(x);
end
// Maximum of two integers.
func Max(a : integer, b : integer) => integer
begin
return if a >= b then a else b;
end
// Minimum of two integers.
func Min(a : integer, b : integer) => integer
begin
return if a <= b then a else b;
end
// Calculate the logarithm base 2 of the input. Input must be a power of 2.
func Log2(a : integer) => integer
begin
assert IsPowerOfTwo(a);
var b = a;
var r : integer = 0;
while b > 1 do
b = b DIV 2;
r = r + 1;
end
return r;
end
// align down to nearest multiple of 2^y
func AlignDown(x : integer, y : integer) => integer
begin
return asl_align_int(x, y);
end
// align up to nearest multiple of 2^y
func AlignUp(x : integer, y : integer) => integer
begin
return asl_align_int(x + 2^y - 1, y);
end
// test whether x is even
func IsEven(x : integer) => boolean
begin
return x[0] == '0';
end
// test whether x is odd
func IsOdd(x : integer) => boolean
begin
return x[0] == '1';
end
////////////////////////////////////////////////////////////////
// 9.2 Standard real functions and procedures
////////////////////////////////////////////////////////////////
// Convert integer to rational value.
func Real(x : integer) => real
begin
return asl_cvt_int_real(x);
end
// Nearest integer, rounding towards negative infinity.
func RoundDown(x : real) => integer
begin
return asl_round_down_real(x);
end
// Nearest integer, rounding towards positive infinity.
func RoundUp(x : real) => integer
begin
return asl_round_up_real(x);
end
// Nearest integer, rounding towards zero.
func RoundTowardsZero(x : real) => integer
begin
return asl_round_tozero_real(x);
end
// Absolute value.
func Abs(x : real) => real
begin
return if x >= 0.0 then x else -x;
end
// Maximum of reals.
func Max(a : real, b : real) => real
begin
return if a >= b then a else b;
end
// Minimum of reals.
func Min(a : real, b : real) => real
begin
return if a <= b then a else b;
end
func Sqrt(x : real) => real
begin
return asl_sqrt_real(x);
end
////////////////////////////////////////////////////////////////
// 9.3 Standard bitvector functions and procedures
////////////////////////////////////////////////////////////////
// Return the concatenation of 1 or more copies of a bitvector.
func Replicate{M}(x : bits(M), N : integer) => bits(M*N)
begin
return asl_replicate_bits(x, N);
end
// Return a bitvector consisting entirely of N '0' bits.
func Zeros(N : integer) => bits(N)
begin
return asl_zeros_bits(N);
end
// Return a bitvector consisting entirely of '1' bits.
func Ones(N : integer) => bits(N)
begin
return asl_ones_bits(N);
end
// Return true if bitvector consists entirely of '0' bits.
func IsZero{N}(x : bits(N)) => boolean
begin
return x == Zeros(N);
end
// Return true if bitvector consists entirely of '1' bits.
func IsOnes{N}(x : bits(N)) => boolean
begin
return x == Ones(N);
end
// Zero-extend a bitvector to the same or a wider width.
func ZeroExtend{M}(x : bits(M), N : integer) => bits(N)
begin
assert N >= M;
return asl_zero_extend_bits(x, N);
end
// Sign-extend a bitvector (treated as 2s complement) to the same or a wider width.
func SignExtend{M}(x : bits(M), N : integer) => bits(N)
begin
assert N >= M;
return asl_sign_extend_bits(x, N);
end
// Extend a bitvector to a specified width, treating as signed or unsigned.
// The output width might be narrower than the input, in which case the
// function is equivalent to a bit slice.
func Extend{M}(x : bits(M), N : integer, unsigned : boolean) => bits(N)
begin
assert N >= M;
return (if unsigned then ZeroExtend(x, N) else SignExtend(x, N));
end
// Return the width of a bitvector argument, without regard to its value.
func Len{N}(x : bits(N)) => integer {N}
begin
return N;
end
func SignedSat(x : integer, N : integer) => bits(N)
begin
let r = if x >= 2^(N-1) then 2^(N-1) - 1
elsif x < - 2^(N-1) then - 2^(N-1)
else x;
return r[0 +: N];
end
func UnsignedSat(x : integer, N : integer) => bits(N)
begin
let r = if x >= 2^N then 2^N - 1
elsif x < 0 then 0
else x;
return r[0 +: N];
end
func Sat(x : integer, N : integer, unsigned : boolean) => bits(N)
begin
return (if unsigned then UnsignedSat(x, N) else SignedSat(x, N));
end
// Count the number of 1 bits in a bitvector.
func BitCount(x : bits(N)) => integer {0 .. N}
begin
var result : integer {0 .. N} = 0;
for i = 0 to N-1 do
if x[i] == '1' then
result = (result + 1) as {0 .. N};
end
end
return result;
end
// Position of the lowest 1 bit in a bitvector.
// If the bitvector is entirely zero, return the width.
func LowestSetBit(x : bits(N)) => integer {0 .. N}
begin
for i = 0 to N-1 do
if x[i] == '1' then
return i;
end
end
return N;
end
// Position of the highest 1 bit in a bitvector.
// If the bitvector is entirely zero, return -1
func HighestSetBit(x : bits(N)) => integer {-1 .. N-1}
begin
for i = N-1 downto 0 do
if x[i] == '1' then
return i;
end
end
return -1;
end
// Leading zero bits in a bitvector.
func CountLeadingZeroBits(x : bits(N)) => integer {0 .. N}
begin
return N - 1 - HighestSetBit(x);
end
// Leading sign bits in a bitvector. Count the number of consecutive
// bits following the leading bit, that are equal to it.
func CountLeadingSignBits(x : bits(N)) => integer {0 .. N}
begin
return CountLeadingZeroBits(x[N-1:1] EOR x[N-2:0]);
end
// Treating input as an integer, align down to nearest multiple of 2^y.
func AlignDown{N}(x : bits(N), y : integer) => bits(N)
begin
var result = x;
result[y-1:0] = Zeros(y);
return result;
end
// Treating input as an integer, align up to nearest multiple of 2^y.
// Returns zero if the result is not representable in N bits.
func AlignUp{N}(x : bits(N), y : integer) => bits(N)
begin
if IsZero(x[y-1:0]) then
return x;
else
return [x[N-1 : y]+1, Zeros(y)];
end
end
// Logical left shift
func ShiftLeft(x : bits(N), distance : integer) => bits(N)
begin
assert distance IN {0 .. N-1};
return asl_lsl_bits(x, distance);
end
// Logical right shift, shifting zeroes into higher bits.
func ShiftRightLogical(x : bits(N), distance : integer) => bits(N)
begin
assert distance IN {0 .. N-1};
return asl_lsr_bits(x, distance);
end
// Arithmetic right shift, shifting sign bits into higher bits.
func ShiftRightArithmetic(x : bits(N), distance : integer) => bits(N)
begin
assert distance IN {0 .. N-1};
return asl_asr_bits(x, distance);
end
func RotateLeft(x : bits(N), distance : integer) => bits(N)
begin
assert distance IN {0 .. N-1};
return [x,x][(N-distance) +: N];
end
func RotateRight(x : bits(N), distance : integer) => bits(N)
begin
assert distance IN {0 .. N-1};
return [x,x][distance +: N];
end
func IsParityEven(x : bits(N)) => boolean
begin
var r : bit = '0';
for i = 0 to N - 1 do
r = r EOR x[i];
end
return r == '0';
end
func IsParityOdd(x : bits(N)) => boolean
begin
var r : bit = '0';
for i = 0 to N - 1 do
r = r EOR x[i];
end
return r == '1';
end
////////////////////////////////////////////////////////////////
// 9.5 Other functions and procedures
////////////////////////////////////////////////////////////////
// Print one or more arguments, to an implementation defined output channel.
// This function is provided for diagnostics and does not form part of an architectural specification.
func print{N}(x : bits(N))
begin
print_bits_hex(x);
end
func print(x : string)
begin
print_str(x);
end
func print(x : boolean)
begin
if x then
print("TRUE");
else
print("FALSE");
end
end
func print(x : integer)
begin
print_int_hex(x);
end
func println()
begin
print_char(10);
end
func println(x : string)
begin
print_str(x);
print_char(10);
end
// Convert an integer to a decimal string, prefixing with '-' if negative.
func DecStr(x : integer) => string
begin
return asl_cvt_int_decstr(x);
end
func DecStr(x : bits(N)) => string
begin
return DecStr(asl_cvt_bits_uint(x));
end
// Convert an integer to a hexadecimal string, prefixing with '-' if negative.
// The exact format of the string is implementation defined.
func HexStr(x : integer) => string
begin
return asl_cvt_int_hexstr(x);
end
func HexStr(x : bits(N)) => string
begin
return HexStr(asl_cvt_bits_uint(x));
end
// Unreachable() is used to indicate that part of a subprogram should be unreachable.
// This can be used to guarantee termination of subprograms on error conditions.
func Unreachable()
begin
println("Unreachable() function called.");
println("This should be impossible - report a bug in the specification");
assert FALSE;
end
////////////////////////////////////////////////////////////////
// End
////////////////////////////////////////////////////////////////